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ABSTRACT

The equation of (ranspcn of the turbulence energy density is analytically solved under simplified assumptions. The
simplified solution is coupled to the transport equation of particles by the turbul particle int¢ ions. The
result of such a couplmg is an analytical solution to the problem of the slmultaneous evolution of the turbulence and the
accelerated particles in plasmas. This solution applied to the case of the fast magneto®onic turbulence allows us to
evaluate the effect of a more the turbulence spectral distribution on the conformation of the particle energy spectrum
relative to the case where a constant turbulence energy density s considered during the particle acceleration process.
Results indicate that there is an overestimation of the amount of energetic particles when it is assumed a constant supply
of turbulence energy density with respect to the more realistic situation derived in this work.

I. INTRODUCTION particles, however, such a coupling is not a simple one,
taking into account that the transport equation of the
Particle acceleration in turbulent plasmas is a common turbulence is a non-linear differential equation,
process in nature and has been studied for long time Nevertheless, (Miller et al. 1996, Miller 1999), derived
(e.g. Tsytovich 1966, 1970); in spite of the elapsed time, numerical solutions for the steady state case.
the characterization of the physical mechanisms by With the aim of obtaining analytical solutions to this
means of which the turbulence evolves and transfer problem, in this work we derive simplified solutions to
energy to the plasma particles is a problem that has not the turbulence transport equation (section IlIt). These
been completely solved (e.g. Miller et al 1997), Within solutions determine the instantaneous amount of energy
the context of particle acceleration in a turbulent plasma, that the turbulence supply. :. This solution must be
most of acceleration models assume the existence of a coupled to the equation of particle energy evolution
turbulent state such that its energetic content remains which analytical solutions were derived by Pérez-Peraza
constant during the acceleration process; however, the and Gallegos-Cruz, (1994), Gallegos-Cruz and Pérez-
condition for the existence of such state requires of a Peraza (1995), which solution determines the
balance between a number of effects to maintain a ib of the particles
constant energy flux, from the energy containers of per energy interval, N(E,t) (Section IV). However, those
large scale (i.e. large scale turbulent structures) to the analytical solutions were quantified under the
small scale energy containers where occurs the assumption of a constant rate for the turbulence energy
dissipation of the turbulent energy and the density. In order to evaluate particle energy spectra
corresponding energy transfer to the plasma particles. N(E), under more realistic situations than those
The study of this two-fold problem leads, for one side, to obtained with W(rk,t) = Cte, in Section V we introduce
the of a transport equation of the turbulent the simplified analytical solutions obtained in Section Il
energy density W(rkt) in the physical space and the into the analytical solutions of the energy spectra
wave number space, from the generation region, at described in  Section 1V, which implications are
large wave lengths, to the spectral regions of discussed in section VI.

dissipation, at short wave lengths, (Section Il) , and on
the other hand, the establishment of the evolution %
equation of the number of accelerated particles N(E,t) as Il.  TURBULENT ENERGY TRANSPORT

a result of the turbulence-particle interaction. Therefore,

the equation describing the spectral evolution of the The istical of i i MHD
turbulence must be coupled to the equation !hai turbulence in the lndlmensional space of wave numbers
determines the energetic ion of the (k-space) can be as a function of the energy
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density € in terms of the wave number and time (e.g.
Leith, 1967) as &)= J.de,(k,l) where

Wr(k”) represents the tridimensional spectral density
of energy fluctuations in units of energy density/volume,
in the phase space. The concept of turbulent energy
involves the kinetic energy of the fluctuations velocity as
well as the magnetic energy associated with the
fluctuations of the background magnetic field. The
hydmdynamic description of turbulence evolution in
terms of an energy diffusion equation in the space-k
(Leith, 1967) was introduced in MHD by Zhou and
Matthaeus (1990).  For the establishment of such
equation it is assumed that turbulence evolution occurs
through a turbulent cascade, involving several steps,
from the large scale energy containers up to the small
scale containers where direct dissipation of the
turbulence takes place efficiently. In addition of the
transport of the energy spectral density of the turbulence
in the space of wave numbers, this equation also
includes transport in the physical space and terms of
supply and dissipation of the turbulent energy:

%V-"—JrL,W,+J,,=S—D )
it

where L, denotes a linear operator of spatial transport
acting on the turbulence energy spectrum #;, that may
include several effects, such as propagation, convection
and expansion; Jy is the transport operator

in the space-k involving changes per time unit of the
energy of the fluctuations that have wave numbers close
to k. These changes are produced by non linear
couplings with the other fluctuations, that is, with those
which wave number is k, # k. An important hypothesis

in this context is to suppose that coupling contributing to
Jx only act by ing the spectral distribution of the
fluctuations, but do not change the amount of energy of
the turbulence. Changes in the turbulence energy
appear from the energy sources (S) and the energy
sinks (D), which k-values are usually out of the
dissipation range. The term (S) includes energy supply
due to fluctuations of large wave number, and the term
(D) includes dissipation effects of the turbulence such as
viscous dissipation, thermal conduction, etc. An addition
hypothesis is to suppose that the total effect of all
these non linear couplings is translated in a local energy
spectral transfer in the k-space. On basis to these
hypothesis it is assumed the existence of a continuos
flux of energy density through the tridimensional space
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of wave numbers, allowing then to define an energy flux
vector ( F ) in the k-space which satisfies

Jy ==Y, ¢ F(k) ]

where V, o /' indicates the divergence of the vector
F in the k-space. According to the energy conservation
hypothesis _"Jkdlc =0) and the assumption that
changes in the spectral distribution are produced by non

linear couplings, equation (2) may be rewritten (Zhou
and Matthaeus, 1990) as

3,
a 3

where WT(k) is the tridimensional spectral density of
the turbulence energy. For the case of isotropic
turbulence it is convenient to define the unidimensional
energy spectral density #,.(k), that is the flux vector

F through concentric spheres in the tridimensional k-
space:

F (k)= 4k Fo (k) @)

where F(k) is the radial component of the vector (k)
in spherical coordinates, and the other two components
are equal to zero by symmetry effects, the tridimensional
energy density also satisfies F; (k) = 47c*H, (k).

The hypothesis of local energy transport in the k-space
and its conservation by non-linear interactions leads to
the assume that energy transport is described by the
divergence of the tridimensional energy flux, such as
established in equation (2). The adoption of a Fick law
between the vector flux (with value near the wave

number k) and the spectral density W,(k) leads to

diffusion approximation in the k-space within the MHD
context:

F(k)=-DV #,(k) 5)
A dimensional analysis of the problem (Zhow and
Matthaeus, 1990) leads to the establishment of a
diffusion equation in the k-space of the following form:



W, (k) a[z 3l s }
ey K*D=(kw, (k 6
(25 _-alroqme] o

This equation describes the diffusion of turbulent energy
in the k-space and D is the corresponding diffusion
coefficient.  According to equation (6) the model of
diffusion for non-linear couplings depends only on the
energy spectral density, the wave number and the
spectral transfer time. Under this basis, equation (1) can
be rewritten in the diffusion approximation as

oW (k) _
a ok

l:k D k)—( 1W(k,:))]- Do (ko) + S(ky )
(7)

IIl. SIMPLIFIED SOLUTIONS OF THE TRANSPORT
OF WAVE NUMBERS

To solve the transport equation (7) it is necessary to
know the explicit form of the diffusion coefficient in the
space of wave numbers [D(k,t)], the injection [S(k,t)] and
the dissipation [Dgss(k,t)]. The usual form of the
dissipation function is (Leamon et al, 2000):

Dass(k, 1) = -y (K)E(K) ®)
the equi in the hydrodyi ic case corresp to
the viscosity, with y (k) - vk?, where v is the viscosity
coefficient; however, in the MHD context viscosity is not
the unique dissipation process acting on the turbulence
waves, there is also thermal conduction e interaction of
plasma particles with neutral atoms (Braginskii 1962,
Eilek, 1979). Regarding the term of injection of
turbulence [S(k,t)] it is usually assumed that is injected
at a given wave number k; at a constant temporal rate
(e.g. Miller, 1996; Stawicki et al, 2001).

One of the central problems in the solution of equation
(7) is the explicit knowledge of the diffusion coefficient
[D(k,t)], because it involves the microscopic description
of the interaction between the several turbulence
excitation states, represented through the wave
numbers and characterizing the cascade of energy
spectral transfer. Usually it is assumed the following
form:

D(k)~

kZ
P10) o
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where 7 (k) is the characteristic time for spectra|
transfer of turbulent energy, depending on the specific
approach in consideration. In the Kolmogorov type
approach this time for a given wave length is the “sddy
turnover time (A / §v), where*8v is the rms of the wave
fluctuations, while in the Kraichnan type approach this
time is (va / 8v) times longer:

B (2U )\/Z

7, (k) —W (Kolmogorov)
(10)

7, (k)= 2%” (Kraichnan)

v, kW, %
i . B’
where Va is the Alfven velocity and Us=8— is the
73

magnetic energy density of the background magnetic
field.

1. Simplified Solution: Steady State Solution
without Dissipation.

This case is the simplest solution of equation (7), and is

5(1)

directly obtained by setting ———— =0 and D(k) as

given in equation (9) with its corresponding 75(k), so
that the obtained solution is

W(K)=W,k? (1)

with q = 5/3 for K type 1ology and q

= 3/2 for the Kraichnan type.

2" Simplified Solution: the case of Negligible
Cascade.

This simplified solution is obtained when the wave
intensity is enough small, so that the term of cascade

canber and eq (M) b as follows:
oWGD.. YW (K,)+S(K,t) (12)
ot
in which case the steady state solution is
W(k,t)= W‘(g(;‘){ -] (13a)



whereas the time-dependent solution in the equilibrium
approach, thatis (f — ), itis obtained

WyS(k)

(13b)
7(k)

w (k)=

In these solutions, the injection function S(k) and
dissipation function y(k) are time constants. For the goal
of simplicity it has been assumed (Miller, 1995) that
turbulence is injected at one specific wave length at a
constant rate between a time t and a time t: S(k\) =
QH(trt)S(k-ki), where Q is the energy deposition rate
and H is the step function. When the turbulence begins
to act at t=0, then W =W, 5(k —k;), where W, is the
initial wave energy density. For the dissipation function
there exist several assumptions. In the particular case of
fast magnetosonic turbulence in an electron-proton
plasma there is the resonant damping (e.g. Ginzburg,
1970) and transit time damping for an isotropic particle
distribution (Stix, 1962) in the first case we have:

2, +5e“”‘°"”>} (14)
\} ",

where 6 is the wave propagation angle with respect to
the background magnetic field. For the second case the
rate is (Michalek et al, 1999):
2
v Ju
. —£ (15
UD

I | sen 9

M eoso | Cleos’o
where Uy, is the energy density of the energetic particles
and C the light velocity.

sen X4
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IV. THE TRANSPORT EQUATION OF ENERGETIC
PARTICLES.

The coupled solution of the equations of turbulence
transport (Eq. 7) and energetic particle transport (e.g.
Pérez-Peraza and Gallegos-Cruz, 1994; Gallegos-Cruz
and Pérez-Peraza, 1995) in a turbulent plasma is highly
difficult to obtain in an analytical way, taking into account
that the former is a non-linear equation. However, a first
approximation to the coupling problem may be done by
incorporating some of the simplified solutions of
equation (7) into analytical solutions of the transport
equation of energetic particles: assuming that particles
are accelerated by fast magnetosonic turbulence in a
solar flare scenario Pérez-Peraza and Gallegos-Cruz,

<
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(1994) and Gallegos-Cruz and Pérez-Peraza, (1995)
have derived the following analytical solutions

NE) = Lleyars) " " By ool 00y ) |

(particles / energy unit) (16)

for the steady-state situation, and

BB (el 5)" a2 ey Ey
N(ED = x| (.,,)cw( agt )v( )( ) LACHD)]

(particles /energy unit x unit time)  (17)

in the case of the lime-dependgnl solution.

E is the particle kinetic energy, € their total energy, o (s
') the acceleration efficiency and the rest of constants
are described in Pérez-Peraza and Gallegos-Cruz,
(1994) and Gallegos-Cruz and Pérez-Peraza, (1995).

It is precisely the acceleration efficiency that contains
the information about the supply of turbulent energy to
the acceleration process (e.g. Miller et al, 1995)

/k)<k > J'W(k 1,6)dk

K

3,

a(< k>,t) _——ln(
Bge

(18)

where <k> denotes lhe wave number average, welghly
over the g spectral that is

1= .
k>=0) [iew (e vty (19)

(%
where W,
atthe time t.

is the total energy density of the turbulence

V. RESULTS

For the stationary case we use the obtained wave
number spectral distribution, eq. (13b), into equations
(18) and (19): for the evaluation of <k> we have
considered the interaction between protons and fast
magnetosonic waves with wave number k comprised in
the range K - kuax. For the evaluation of the lower
frequency cutoff kmn We assume interaction of protons
with turbulence which waves length is much greater

than the gyroradius of protons A >> Porotones SO that

taking Ay =100,,0,, and p = P& / €B, it is



obtained kmin = 3.017x10"°B/Be. The upper frequency
cutoff is considered to occur at the proton gyrofrequency
Q, = @B / myC, 50 that Knax = Qmax/Va = 4.39128 x 107
 where V,is the hydromagnetic Alfven velocity.
For the evaluation of the dissipation function y we use
the combined effect of the coefficients given in egs. (14)
and (15). the later W|lh Up/Ug-ZO Once <k> is
d, the i given in eq. (18) is
introduced in the statlonary energy spectrum, eq. (163
The evaluation for T=: 2x10 K, 7=0.2 s, n=5x10" cm
B= 200 G, W,=2 erg/cm’ and Eq=1 MeV is shown |n
figure 1 for several angles of wave propagation with
respect to the background magnetic field: the solid curve
(upper one) shows the distribution of energetic protons
per energy interval (energy spectrum) when the
employed turbulence spectral distribution is of the
Kolmogorov type (eq. 11), that is, constant in the time,
whereas the rest of curves show energy spectra with
consideration of dissipation effects for the stationary
case, that is with eq. (13b).
For the time-dependent case <k> is evaluated with the
turbulence spectral distribution given in eq. (13a), with
y evaluated as in the previous case, so that the
corresponding acceleration efficiency, eq. (18) is
introduced in the non-stationary particle energy
spectrum, eq. (17) . Results are shown in Figures 2 and
3, where the solid lines (upper curves) correspond to a
spectral distribution of the Kolmogorov type, eq. (11)
without dissipation effects, while the rest of curves
correspond, as previously mentioned to <k> and o
evaluated with eq. (13a). Figure 2 shows the evaluation
for different wave propagation angles with respect to the
background magnetic field, whereas in Figure 3 the

evaluation is done for a fixed angle (6 =10°) and
different acceleration times.

VI ANALYSIS AND CONCLUSIONS

Analysis of figures 1-3 indicates that in both cases, the
steady-state and the non-stationary one, there is a
notorious diminution of the amount of particles per
energy interval, when a more realistic spectral
distribution of the turbulence energy density (with
dissipation effects) is considered, and this diminution is
more notorious as the wave propagation angle
increases.

On the other hand, we can appreciate from Figure 3
that there is a slight increase in the amount of energetic
particles per energy interval as the acceleration time
increases, though for the set of parameters employed
here the equilibrium is rapidly reached , around 5 s.
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FIGURE 1. Steady-state particle energy spectra for
three different wave propagahon angles with the
followmg parameters:T=2x10°K, 7 =0.2s , n=5x10°
em®, B =100 G. , W,=2 erglem® y E,=1 MeV.

10’

N(E,t) PROTONS/MeV s

. . .
10 o 10
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FIGURA 2. Time-dependent particle energy
spectra for several wave propagation angles and
the following parameters: T=2x10°K, 7=0.5s,
n=5x10° em®, B =100 G. , Wo=2 erglcm’ , t=5s

y E=1 MeV
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FIGURA 3. Time-dependent particle energy spectra
for several values of the acceleration time and a
given wave propagation angle, with the following:

T=2x10°K, 7 =0.5s, n=5x10° cm”B=100 G. , W,=2

erglem®, 0=10° y E,=1MeV.

We conclude from this preliminary analytical approach
to lhe problem of solving simultaneously the evolution

and particles, that
the mclusmn of dissipation effects of the turbulence
during acceleration leads to a decrease of the number
of accelerated particles per energy interval, though it is
clear this picture may be modified if instead of the
simplified case considered here the effect of cascade
were included. An analytical study taking into account
all these effects will be the matter of a forthcoming
work.,
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