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Abstract 3

Elastic proton-proton scattering is the most \lmplr‘ process in high-energy hadronic interactions. One of the main tasks

in this field is to detemine the total proton cross s

are known long ago from accelerator experiments in thr- energy range /3 < 1.8 TeV/

experimental data. Total cross sections
and in the range /3 = 6 — 40 TeV.

from Extensive Air Shower. In order to know the afa’ encrgy behavior within the aceelerator data range and beyond, it

.dnd to fit, the .‘w:\il.’\hlu set.
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a.\mcmtrd m their predictions are not. repor!
energics from accelerator data and cosmic data, widely di
methods would offer a confident. crror interval.
to obtain h\ghly precise predi
a confident tical error interval
the multiple-diffraction model to
covers both LHC and the highe:
only more pre

that the conventionnal x* te

ata and also to predict data by extrapolation to high energies. However, if
bout the extrapolation problem, we find in some of them that the

s the corresponding uncertaintics
grﬂ-man <-xmmg h ween the extrapolated data to high
i studied, if prediction

‘The main goal of different. methods is to minimize the involved errors
ns. In this work we present an alternative predi

ion method that allows to determine

round cach of the a5t predicted points. Predictions are developed on the basis of
mate (2 in the center of mass range 10 — 40 TeV (10'" = 10" eV in lab) which
ssmic ray energies. We conclude th

at at least in this case the proposed method is not.

chnique but also more economic from the point of view of calculation time,

becanse the process is based in a nnique calenlation instead of multiple iterations.

INTRODUCTION

It is experimentally very well known that ofef rises with
energy up to 62.7 GeV in the centre-of-mass; later in the
80’s such a rising for ¢ was also known when the SppS
collider became opPr:\tmn. ; the Tevatron lm.s confirmed this
tendency up to 2 TeV , equivalent to E=10"® ¢V in the labo-
ratory (1], (2], (3], [4], 5] At the same time the difference A
= afst - oot goes to zero as s~"57 with increasing energy /5
[6]. On this basis, and from the fact that it. does not affect
the goal of this paper, we asume for symplicity that both g}
and of3t are equal asymptotically. Besides, when no dangor
of confusion arises, we designate in a generic way .o, for any
of them.

To go to higher energies we have to rely on cosmic rays
estimations, which cover the range /5 =6 — 40 TeV in the
center of mass (7], (8]. On the other hand, we can estimate
the o*** high energy behaviour beyond the accelerator data
range by fitting in 2 model-dependent way the available data
set and then to predict data by extrapolation to higher ener-
gies. Actually the extrapolation is based in purely theore-
tical, empirical or semi-empirical methods widely accepted
because it is a useful tool to draw inferences about the opo!
energy behavior. The pioneer work was given in [9] with
very good results and extended in [10]. However, a careful
analysis shows the comparison between the extrapolated data

from accel and the actual e made from cos-
mic rays to be difficnlt. The origin lies in the indirect way
in which total cross sections are estimated from cosmic rays,
nowadays widely discussed in the literature (11], [12]. Depen-
ding on the particular assumptions, the values may oscillate
by large amounts [13]. The problem could be better studied
if prediction methods would offer a confident. error interval,
becanse the ability of a statistical method to reproduce data
of any physical quantity with high precision gives the pattern
for the prediction of out. of the range data. Prediction proce-
dures of significant. physical quantities represent a useful tool
in drawing inferences about. the behaviour of the out-of- the
range dafa and so, about. the generator events. Theoretical
predictions out of the range of a data set involve a certain
degree of uncertainty. With the aim of evaluating t.h(- con-
fidence of such ictions it is . to dete e the
uncertainty associated to the pres ions of the dam.

In this context, popular methods generally use the x? te-
chnique, based on the minimization of the quadratic sum of
data deviations with respect to the employed mathematical
model of prediction. In this work we present an alternative
prediction method that allows to determine a confident sta-
tistical error interval around each of the a** predicted points.
As an application, predictions are developed on the basis of
the multiple-diffraction model to estimate o* in the centre
of mass range 10-40 TeV ( 10'7=10'® eV in lab) which covers
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poth the future LHC accelerator (CERN, Geneva) range and
tot from cosmic ray data at the highest energies available.

THE STATISTICAL PREDICTION TECHNIQUE

The validity of any statistical method to predict. a given phy-
sical quantity out of the range values (extrapolation) depends
on its precision to reproduce the employed data (interpola-
tion, namely fitting). A fundamental task of any predic
method is to minimize the error band of the predi
of values. In the specific case of o't what. is searched is to
obtain a prediction beyond the energy range of the employed
data with the minimum of dispersion. Instead of the usual
x* technique to determine a confident. interval around each
predicted value, we propose here the use of the Forecasting
technique (18] as a valid alternative. This method is based
on the maultiple linear regresion theory and consists in de-
termining a prediction equation for a quantity y (dependent
variable), that in turns depends on k independent variables
(zi), that is

.
E(y) =Y wfix)

i=0

(1)

(with fo(zs) = 1) , where f; are arbitrary functions of z;,
and 7; are the fitting constants. In the generalized
sion the variable z; may depend on other parameters, i
i = Ti(8, ).

To solve the prediction problem involved in equation (1),
the matrix formalism is used. Denoting with Y the matrix of
(nx 1)-dimension of the dependent variables and with X the
matrix of [n x (k + 1)]-di of the k i dent, va-
riables, the row zj 2y.... 214 determines the value g of the
dependent variable, the row @z, 729 determines the
value y, and so on. The variables contained in the matrixes
X, Y can be related by the matrix equation Y = XB, which
is the matrix expression of the prediction equation (1). The
[(k + 1) x 1]-dimension matrix B contains the values of the
constants -y; needed to write in explicit form the prediction
equation (1) [18] . We then have

B=(X'X)"'X'Y (2)
where X* denotes the transposed matrix of X and (X*X)~'
denotes the inverse matrix of X*X. As we can see esse Iy
this equation minimizes the quadratic sum of the deviations
of points (z,;) with respect to the prediction equation pro-
posed through equation (1). With those matrixes several sta-
tistical estimators are easily determined, such as the Sum of
Square Errors (SSE)

SSE = Y'Y - BY(X'Y) 3)
and the Mean Square Error (S§) given as
SSE
2 _ 4
S T =G+ @

where the denominator defines the number of degrees of free-
dom for errors, given by the number of 7; - parameters. Once
these estimators are calculated, we then evaluate the uncer-
tainty band with a 100(1-§)% of precision degree considering
two cases. First, for fitting (prediction within the range of
data) by means of

1/2

INTB =yt {S{AY(X'X)~" 4} (5)
Secondly, for extrapolation (prediction out of the data range)
with
; = 2 tpvtyy=! 12

EXTB = yﬂ:/,:;/._,”{s,i [1 + AL (X1X) A]} 6)
Here y denotes the central predjetion corresponding to the
set data included in X — matriz, L4 denotes Student's
{t} -distribution for the n values of the independent varia-
bles with p degrees of freedom, and §/2 denotes the degree of

cision. INTB(+), EXTB(+) and INTB(~), EXTB(-)
he corresponding Upper and Lower bounds respecti-
vely. The matrix A denotes the column-matrix of (k+1) x 1
dimension, which elements {1,71,%y,..., 74} correspond to
the numerical values of the v; appearing in equation (1). A'is
the transposed matrix of A. In the estimations which follow
we have set. §/2 = 0.125 which corresponds to 95% precision.

THE MULTIPLE DIFFRACTION MODEL

Let us now illustrate the use of our statistical prediction met-
hod within the context of the problem mentioned in the intro-
duction, i.e., the determination of o*** at very high energies.
Among the different alternatives we choose Glauber's multi-
ple diffraction theory (14] applied to hadron-hadron scatte-
ring (15] under the particular approach given in (16]. It has
the advantage of using only five parameters: two of them, a
and f, associated with the form factor Gy of the nucleon,
and three (C(s), @ and A(s)) associated with the elementary
parton-parton amplitude f(q,s). Within this approach g%
in the Multiple Diffraction Method is determined through the
following expression:

Tis= 4 / ¥ b {1~ =N cos (N4, )]} Jola) (D)
o

where b is the impact parameter, I'd —t the four-
momentum transfer squared among the protons and J, is
the zero-order Bessel function. The critical ingredient is the

so-called opacity function Q(b, s) given by the equation

o) = [ ol Gmf(q, @) ®
An explicit expression is
Q(b, 5) = C{Bxko(ab) + Exko(Bb) + Eskei(ab)+
Euker(ab) -+ b[Eski (ab) + Esky (Bb)] } (9)
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where kg, ki, kei, and k., are the modified Bessel functior
and E, to Eg are functions of the free parameters. This equa-
tion was numerically evaluated for nine energics, seven for pp
(13.8, 19.4, 23.5, 30.7, 44.7, 52.8, 63.5 GeV) and two for pp
(546 and 1800 GeV) [17].

THE STATISTICAL ERROR BANDS

The confidence intervals for a,,, are estimated through a two-
step process:

In the first place the values of the free parameters of the
model were obtained through a de
lues of both the differential elast:
ratio of the Real to the Imaginary part of the forw.ud
tic scattering amplitude, p = Ref(q,s)/Imf(q,s) and the
behaviour with energy, from the ISR to the Tevatron. Two
of them, a y f are constant with encrgy, a® = 8.20 GeV?
and A% = 1.80 GeV% The whole procedure to obtain the
three energy dependent. wrameters is described in de-
tail in [21. A parame fitting of those free parameters

C(s), a~*(s) and A(s) can be expressed with the help of the
following analytic expressions
C(s) = 19.24521 — 2.86114 Ins) +0.22616 In%(s)  (10)
a~(s) = 1.8956 — 0.03937 In(s) +0.01301 In2(s)  (11)
A(s) = 0.01686 +0.00125 (1 = g~intoron /015543 1
0.19775 (l o= c~ln(.v/4(ln)/:|.74ﬂd2) (12)
Vi C(s) a~%(s As)
(GeV) | (GeV™?) | (GeV~?)
13.8 | 9.9039 2.0945 | -0.12816
19.4 | 10.082 2.1469 | -0.02848
23.5 | 10.225 2.1798 | 0.00975
30.7 | 10474 2.2296 | 0.04942
44.7 | 10.923 2.3075 0.08786
52.8 | 11.159 2.3451 0.10064
62.5 11.421 2.3849 0.11172
546 | 16.872 3.0634 0.18035
1800 | 21.518 3.5685 0.19501
14000 | 32.239 4.6555 0.20703
16000 | 33.056 4.7359 | 0.20749
30000 | 37.102 5.1298 | 0.20927
40000 | 39.062 5.3188 | 0.20993
100000 | 45.757 5.9568 | 0.21153

Table 1. Values of C(s), a~%(s) and A(s) from
equations (10) - (12) considering experimental
values up to 1800 GeV and extrapolating up to
100 TeV.

‘Table 1 summarizes the results, quoting the values ob-
tained for the model parameters C(s), a~%(s) and A(s) as
a function of the energy /5. For the following discus-
sion on extrapolation, we have included five supplementary
encrgy points, in addition to the encrgies at which experi-
mental values ilable, which represent. the central va-
Ines at five chosel wpolation energies: 14, 16, 30, 40
and 100 TeV. In the second step, applying the procedure
described through equations (1) - (6), the upper and lower
bounds for C(s), a~*(s) and fB(s) are determined at each
one of the energy values. We obtain in Lhis way the up-
per and lower confidence intervals for each of the three pa-
rameters. The results are shown in figures 1, 2 and 3 for
C(s), a~* and A(s) respectiyely. Next, from those previous
caleulated upper and lower confidence intervals values for
C(s), @~*(s) and f3(s) we determine the corresponding up-
per and lower confidence intervals for @y, Tables 2 and
3 summari he central, upper and lower gio values, to
be compared with the experimental values. The final re-
sults of the overall procedure are shown in figures 5 and 6.
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Fig. 1. The parameter C(s) and its confidence interval.
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Fig. 2. The parameter a™%(s) and its confidence interval.

wpper | tawer tot
Tl Ttot 7

Vi Ttot ep
(GeV) | (mb) | (mb) | (mb) (mb)

13.8 | 38.30 | 39.24 | 37.38 | 38.36 & .04
19.4 | 38.92 | 39.80 | 38.05 | 38.97 + .04
23.5 | 39.44 | 40.32 | 38.58 | 38.94 + .17
30.7 | 40.37 | 41.25 | 39.49 | 40.14 + .17
44.7 | 42.00 | 42.93 | 41.08 || 41.79 +.16
52.8 | 42.84 | 43.79 | 41.90 || 42.67 + .19
62.5 | 43.77 | 44.75 | 42.80 || 43.32 + .23
546 | 61.78 | 63.11 | 60.49 | 61.5 + 1.5
1800 | 76.02 | 78.43 | 73.68 76. +1.6
14000 | 106.51 | 113.07 | 99.96 R
16000 | 108.73 | 115.67 | 101.79 -
30000 | 119.60 | 128.43 | 110.64 ---
40000 | 124.74 | 134.57 | 114.77 ---
100000 | 142.01 | 155.34 | 128.28 .-

s)

Table. 2. Central, upper and lower values for 7., obtained with
the forecasting technique. Experimental values (/%) are quoted
for comparison. Data has been use up to 546 GeV, corresponding
agils to Fig. 5.
10' 19 19 170 10
8 @ev)

Fig. 3. The parameter A(s) and its confidence interval.
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tat

method in the specific case of ), constrains the possible

high energy values of gy to a n.\rmw band; it may then he
V3 L i N ol employed as a valuable tool in the comparison between the
(GeV) | (mb) (mb) (mb) (mb) values for @0 estimated from Cosmic Ray experiments and
the extrapolations from accelerator data.
13.8 [ 33.20 [ 30.35 | 37.31 [ 38.36 £ .04
19.4 | 38.92 | 30.90 | 37.95 | 38.97 £ .04
235 | 39.44 | 4041 | 3848 | 38.94 % .17
30.7 | 40.34 | 41.33 | 39.39 || 40.14 £ .17
44.7 | 41.93 | 42,99 | 40.97 || 4179 +.16
52.8 | 42.76 | 43.85 | 41.78 | 42.67 + .19 3 ;
62.5 | 43.67 | 44.80 | 42.68 || 43.32 .23 Vi X5aa Faaa Xp Fison
546 | 61.62 | 63.20 | 60.68 | 615+ 1.5 (TeV) | (mb) (mb) (mb) (mb)
1800 | 76.17 | 78.19 | 75.10 || 76. +1.6
14000 | 108.27 | 112.99 | 105.10 18 | 77440 [ 760134 | 765423 | 762139
16000 | 110.67 | 115.65 o
30000 | 122.41 | 128.78 14 12413 | 106.5+6.5 108.3
40000 | 12805 | 135.13 | 12278 S 16 1087+ 7.0 [ 1ixso [ 1107459
100000 | 147.14 | 156.77 | 139.46 ---
30 119. s*_‘ﬁ}‘, 1224754
Table. 3. Central, upper and lower values for a0/ obtained
with e fovoutating TaOMiGHE. Eemiu [C) 4 2478 | o | 128073
are quoted for comparison. Data has been use up to 1800 100 142,Uﬂﬂ 147.1H1L!16
GeV, corresponding to Fig. 6. g =0

DISCUSSION AND CONCLUSIONS

In order to evaluate the quality of the fnr(»msvmg technique
ler. us compare it with well-known versions of |h<~ standard
x* method. In Table 4 we quote results of the y? method for
two cases: in the first one, a fit to ' including data up to
546 GeV [19], wh n the second one, a more
strong version of the same fit, this time fitting smmlr.mmus]y
' and the p parameter [20], which we call X2, ,, again in-
cluding data up to 546 GeV. We compare their predictions
for gt at several energies with our predictions which we call
Fyq. The empty spaces in Table 4 are due to the fact that
the authors of the fits do not quote values at those energies.
As it can be seen, when the extrapolated energy point. is the
same (data at 14, 16 and 40 TeV), the forecasting errors Fyaq
are only half of the x2,; ones. They are even smaller that the
errors obtained with the improved fit x2 This shows that
the forecasting method is, at least in this case, more pra
that the classical x*. Graphically, the results are represented
in Figure 4 for the predictions of the 2, , fit and in Figure
5 for the predictions of the forecasting Fiys. The inclusion
of more experimental points improves obviously the predic-
tions. This is clearly illustrated in Fig. 6, where we have
applied the forecasting technique taking into account ener-
gies up to 1800 GeV. The error bands are smaller, and the
corresponding values arc put in Table 4 in the Fyggq column,

On the other hand, as we emphasized in the description
of the method, for its use in a computer the forecasting is
much faster than the x> because there is only one iteration
to be done. We conclude that the use of the Forecasting

“Table 4. Comparison of 7gc with the forccasting (F) and the
x* techniques. F d Fygoo correspond to arec evaluated up
10 546 and 1800 GeV respectively.
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Fig. 5. @10 from the forecasting technique (solid line) toget-
her with the region of uncertainty (dotted lines) using data
up to 546 GeV.
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