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Abstract. The ability of a statistical method to reproduce
data of any physical quantity with high precision gives the
pattern for the prediction of out of the range data. Prediction
procedures of significant physical quantities represent a use-
ful tool in drawing inferences about the behaivor of the out-
of- the range data and so, about the generator events. Theo-
retical predictions out of the range of a data set involve a
certain degree of uncertainty. With the aim of evaluating the
confidence of such predictions it is convenient to determine
the uncertainty associated to the predictions of the data. In
the context of p-p cross sections at very high energies a great
deal of work has been done out of the energy range of acce-
lerators using different models (single-pomeron, dipole po-
meron, multiple-diffraction, QCD and so on) to extrapolate
accelerator data: predictions are usually compared to cos-
mic ray data producing a disagreement which explanation
has also been widely discussed in the literature. We claim
that such comparison requires of a highly confident band of
uncertainty for any parametrization model. Here, we pre-
sent a statistical method that allows to determine the relevant
uncertainty. Our preliminary study shows that extrapolations
without a trusful determination of error bands may agree with
most of the results of Cosmic ray experiments, because their
reported experimental errors are very large, but as soon as
such a confident determination is made the predicted energy
dependence ofσtot

pp with its error band delimitates the range
of agreement between any prediction model and cosmic ray
results.

1 INTRODUCTION

Elastic proton-proton scattering is the most simple process
in high-energy hadronic interactions. In this context a wide
variety of methos have been developed for its study, ranging
from phenomenological approaches up to QCD formal trea-
tements. One of the main tasks in these studies is to dete-
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mine the total proton cross sectionσtot
pp in order to repro-

duce experimental data. Total cross sections are known from
accelerator experiments since the 70’s, in the energy range√

s ≤ 1.8 TeV (Amaldi et al., 1973), (Amendiolea et al.,
1973), within the range

√
s = 6 − 40 TeV from Extensive

Air Shower (Gaisser et al., 1987), (Honda et al., 1993) and
from Fly’s Eye Experiments (Glauber et al., 1970), (Baltru-
saitis et al., 1985) at

√
s = 30, 40 TeV. In order to know the

σtot
pp energy behavior within the accelerator data range and

beyond, it is generally proceeded to fit the available set data
and also to predict data by extrapolation to high energies.
The pioneer work with this aim was given in (Amaldi et al.,
1977) with very good results. Actually the extrapolation is
based in purely theoretical, empirical or semi-empirical met-
hods widely accepted (Velasco et al., 1999), because it is a
useful tool to draw inferences about theσtot

pp energy beha-
vior. However, if we analize the diverse works existing in the
literature about the extrapolation problem, we find in some
of them that the uncertainty associated to theσtot

pp prediction
points is relatively large or even in other cases (Martini et al.,
1977) the corresponding uncertainties associated to their pre-
dictions are not reported. Besides, the disagreement existing
between the extrapolated data to high energies from accele-
rator data and cosmic data, widely discussed in the literature,
could be better studied, if prediction methods would offer a
confident error interval. The main goal of different methods
is to minimize the involved errors to obtain highly precise
predictions. In this context , popular methods are those de-
rivated from the so calledχ2 technique, based on the mini-
mization of the quadratic sum of data deviations with respect
to the employed mathematical model of prediction. In this
work we present an alternative prediction method that allows
to determine a confident statistical error interval around each
of theσtot

pp predicted points. Predictions are developed on the
basis of the multiple-diffraction model to estimateσtot

pp in the
center of mass range10 − 40 TeV (1017 − 1018 eV in lab)
which covers both LHC and the highest cosmic ray energies.



13552

2 THE FORECASTING PRONOSTIC METHOD

The validity of any statistical method to predict a given phy-
sical quantity out of the range values (extrapolation) depends
on its precision to reproduce the employed data (interpola-
tion, namely fitting). A fundamental task of of any predic-
tion method is to minimize the error band of the predicted
set of values. In the specific case ofσtot

pp what is searched is
to obtain a prediction beyond the energy range of the emplo-
yed data with the minimum of dispersion. Among the several
statistical methods to determine a confident interval around
each predicted value, we use here theForecasting technique
(Mendenhall et al., 1993). This method is based on themulti-
ple linear regresiontheory and consists in determining a pre-
diction equation for a quantityy (dependent variable), that in
turns depends onk independent variables (xi), that is

E(y) =
k∑

i=1

βifi(xi) (with xo = 1) (1)

Wherefi are arbitrary functions ofxi, andβi are the fitting
constants. In the generalized version the variablexi may de-
pend on other parameters, i.e.,xi = xi(s, t, ..)

To solve the prediction problem involved in equation(1),
we use the matrix formalism. Denoting withY the matrix
of (n× 1)-dimension of the dependent variables and withX
the matrix of[(k + 1) × n]-dimension of thek independent
variables, so that the rowx11x12.....x1k determines the value
y1 of the dependent variable, the rowx21x22.....x2k determi-
nes the valuey2 and so on. The studied variables contained
in the matrixesX,Y can be related by the matrix equation
Y = BX, then theB matrix of theβi fitting constant are de-
termined throughB = (X

′
X)−1XY , whereX

′
denotes the

transposed matrix ofX and (X
′
X)−1 denotes the inverse

matrix ofX
′
X. The[(k + 1)× 1]-dimension matrixB con-

tains the values of the constantsβi needed to write in explicit
form the prediction equation(1) Mendenhall et al. (1993) .
Essentially, this equation minimizes the quadratic sum of the
deviations of points(xij , yj) with respect to the prediction
equation proposed through equation(1). With those matri-
xes, we determine several statistical estimators,such as the
Sum of Square Errors,SSE = Y Y

′ − B
′
(XY

′
) and the

Mean Square Errors(s2), given ass2 = SSE/[n− (k + 1)],
where the denominator defines the number of degrees of free-
dom for errors, given by the amount ofβi - parameters con-
sidered in equation(1). Based on these estimators we can
then evaluate the uncertainty band with a100(1 − α)% of
precision degree as follows: for fitting (prediction within the
range of data) by means of

INTB = y ± tn−p
α/2

{
s2A

′
(X

′
X)−1

}
(2)

for extrapolation with

EXTB = y ± tn−p
α/2

{
s2

[
1 + A

′
(
X

′
X

)−1

A

]1/2
}

(3)

Herey denotes the central prediction corresponding to the
set data included inX −matrix, tn−p

α/2 denotes the so called

the student’st for then values of independent variables with
p degrees of freedom, andα/2 denotes the degree of preci-
sion. INTB(+), EXTB(+) andINTB(−), EXTB(−)
denote the corresponding Upper and Lower bounds respecti-
vely. In our estimations we have usedα/2 = 0.125 which
correspond to 95% of precision. The matrixA denotes the
column-matrix of1 × (k + 1) dimension, which elements
{1, x1, x2, . . . , xk} correspond to the numerical values of the
βi appearing in equation(1). A

′
is the transposed matrix of

A.

3 THE PARAMETRIZATION MODEL

In order to illustrate the use of our statistical prediction met-
hod within the context of p-p interactions, we must determine
σtot

pp . There are several alternatives to do it, one of them th-
rough the Glauber’s multiple difraction theory (Glauber et
al., 1959), under the particular approach given in (Martini et
al., 1977), which has the advantage that it uses only five pa-
rameters: two of them (a2 andβ2) associated with the form
factorsGA andGB , and three (C(s), α2(s) andλ(s)) with
the elementary amplitude. Within this frame the so called
opacity functionΩ(b, s) is determined through the equation

Ω(b, s) =
∫ ∞

0

qdq G2Imf(q, s)J0(q, b) (4)

Which explicit expression is

Ω(b, s) = C{E1k0(αb) + E2k0(βb) + E3kei(ab) +
E4ker(ab) + b [E5k1(αb) + E6k1(βb)] } (5)

Wherek0, k1, kei, andker are the modified Bessel functions,
andE1 to E6 are functions of the free parameters. Therefore,
σtot

pp is determined with the following expression:

σtot
pp = 4π

∫ ∞

0

bdb
{

1− e−Ω(b,s)cos [λΩ(b, s)]
}

J0(qb) (6)

Whereb is the impact parameter,q2 = −t the four-momentum
transfer squared,Jo is the zero-order Bessel function andλ
is the undimensional energy-dependent parameter mentioned
above. This equation was numerically evaluated, and details
are described in (Ṕerez-Peraza et al., 2000).

Table 1. C(s), α−2(s) andλ(s).√
s C(s) (GeV−2) α−2(s) (GeV−2) λ(s)

13.8 9.970 2.092 -0.094
19.4 10.050 2.128 0.024
23.5 10.250 2.174 0.025
30.7 10.370 2.222 0.053
44.7 10.890 2.299 0.079
52.8 11.150 2.370 0.099
62.5 11.500 2.439 0.121
546 18.500 3.540 0.182
630 19.210 3.590 0.184
1800 27.890 4.170 0.197
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