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Abstract. The ability of a statistical method to reproduce mine the total proton cross secti@r@;’f in order to repro
data of any physical quantity with high precision gives the duce experimental data. Total cross sections are known
pattern for the prediction of out of the range data. Predictionaccelerator experiments since the 70’s, in the energy 1
procedures of significant physical quantities represent a usey/s < 1.8 TeV (Amaldi et al., 1973), (Amendiolea et ¢
ful tool in drawing inferences about the behaivor of the out- 1973), within the rangg/s = 6 — 40 TeV from Extensive
of- the range data and so, about the generator events. The&ir Shower (Gaisser et al., 1987), (Honda et al., 1993)
retical predictions out of the range of a data set involve afrom Fly's Eye Experiments (Glauber et al., 1970), (Bal
certain degree of uncertainty. With the aim of evaluating thesaitis et al., 1985) ay/s = 30,40 TeV. In order to know thi
confidence of such predictions it is convenient to determineazt;;f energy behavior within the accelerator data range
the uncertainty associated to the predictions of the data. Ifbeyond, it is generally proceeded to fit the available set
the context of p-p cross sections at very high energies a greatnd also to predict data by extrapolation to high enern
deal of work has been done out of the energy range of accefhe pioneer work with this aim was given in (Amaldi et
lerators using different models (single-pomeron, dipole po-1977) with very good results. Actually the extrapolatiol
meron, multiple-diffraction, QCD and so on) to extrapolate based in purely theoretical, empirical or semi-empirical r
accelerator data: predictions are usually compared to coshods widely accepted (Velasco et al., 1999), because i
mic ray data producing a disagreement which explanatioruseful tool to draw inferences about thggf energy behe
has also been widely discussed in the literature. We claimvior. However, if we analize the diverse works existing in
that such comparison requires of a highly confident band ofiterature about the extrapolation problem, we find in si
uncertainty for any parametrization model. Here, we pre-of them that the uncertainty associated tod@% prediction
sent a statistical method that allows to determine the relevanpoints is relatively large or even in other cases (Martini
uncertainty. Our preliminary study shows that extrapolations1977) the corresponding uncertainties associated to thei
without a trusful determination of error bands may agree withdictions are not reported. Besides, the disagreement ex
most of the results of Cosmic ray experiments, because theibetween the extrapolated data to high energies from ac
reported experimental errors are very large, but as soon asator data and cosmic data, widely discussed in the litere
such a confident determination is made the predicted energgould be better studied, if prediction methods would off
dependence of;f,‘;f with its error band delimitates the range confident error interval. The main goal of different meth
of agreement between any prediction model and cosmic rays to minimize the involved errors to obtain highly prec
results. predictions. In this context , popular methods are thost
rivated from the so calleq? technique, based on the mi
mization of the quadratic sum of data deviations with res
to the employed mathematical model of prediction. In
work we present an alternative prediction method that al

. _ ) to determine a confident statistical error interval around
Elastic proton-proton scattering is the most simple procesg thea;"t predicted points. Predictions are developed or

in high-energy hadronic interactions. In this context a WidebaSiS ofIEhe multiple-diffraction model to estim@tﬁf in the

variety of methos have been developed for its study, ranginq:enter of mass rangk) — 40 TeV (1017 — 105 &V in lab)

from phenomenological approaches up to QCD formal tréay hich covers both LHC and the highest cosmic ray ener

tements. One of the main tasks in these studies is to dete-

1 INTRODUCTION
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2 THE FORECASTING PRONOSTIC METHOD the student’s for then values of independent variables wi
p degrees of freedom, and/2 denotes the degree of prec

The validity of any statistical method to predict a given phy- sion. INTB(+), EXTB(+) and/INTB(-), EXTB(-)

sical quantity out of the range values (extrapolation) dependgjenote the corresponding Upper and Lower bounds resf

on its precision to reproduce the employed data (interpolavely. In our estimations we have used2 = 0.125 which

tion, namely fitting). A fundamental task of of any predic- correspond to 95% of precision. The matrixdenotes the

tion method is to minimize the error band of the predicted column-matrix ofl x (k + 1) dimension, which element

set of values. In the specific caseoq,f;t what is searched is {1, 21, x,,...,2;} correspond to the numerical values of t

to obtain a prediction beyond the energy range of the emplog; appearing in equatiofi). A" is the transposed matrix ¢

yed data with the minimum of dispersion. Among the several 4

statistical methods to determine a confident interval around

each predicted value, we use here Foeecasting technique

(Mendenhall etal., 1993). This method is based omtldi- 3 THE PARAMETRIZATION MODEL

ple linear regresiortheory and consists in determining a pre-

diction equation for a quantity (dependent variable), thatin In order to illustrate the use of our statistical prediction

turns depends oh independent variables:(), that is hod within the context of p-p interactions, we must deterrr
otot. There are several alternatives to do it, one of them

rough the Glauber's multiple difraction theory (Glauber
al., 1959), under the particular approach given in (Martin

) ) . al., 1977), which has the advantage that it uses only five
Where f; are arbitrary functions af;, and(; are the fiting 5 meters: two of themu? and 32) associated with the forn

constants. In the generalize_d version the variablmay de- factorsG 4 andG g, and three (s), a2(s) andA(s)) with
pend on other parameters, i.;,= zi(s, 1, ..) the elementary amplitude. Within this frame the so cal

To solve the prediction problem involved in equatidn, ety functionf2(b, s) is determined through the equatio
we use the matrix formalism. Denoting with the matrix

of (n x 1)-dimension of the dependent variables and wkth
the matrix of[(k + 1) x n]-dimension of the: independent
variables, so that the row; 1 z12.....xz1;, determines the value
1 of the dependent variable, the raw, zos.....x95 determi-
nes the valug, and so on. The studied variables contained _ 4
in the matrixesX,Y can be related by the matrix equation Ubys) = C{Erko(ab) + Fako(5) + Eghei(ab) +

Y = BX, then the B matrix of the3; fitting constant are de- Eyker(ab) +b[Eski(ab) + Eki(60)] } (5)

. o ‘ —-1 !
termined throughB = (X X)~" XY, whereX' denotes the Whereky, k1, k.;, andk,,. are the modified Bessel function

. ’ -1 .
tran;posed/ matrix of and (X" X ) delnotes the inverse andFE to Eg are functions of the free parameters. Therefc
matrix of X X. The[(k + 1) x 1]-dimension matrix3 con- tot

) N .. o°tis determined with the following expression:
tains the values of the constartsneeded to write in explicit bp
form the prediction equatiofil) Mendenhall et al. (1993) . o0 _Qb.s)
Essentially, this equation minimizes the quadratic sum of the’rp = 4”/ bdb {1 —e " Yeos M, 5)]} Jo(qb) (6)
deviations of point§x;;,y;) with respect to the prediction 0
equation proposed through equatign. With those matri-  Whereb is the impact parametef? = —¢ the four-momentur
xes, we determine several statistical estimators,such as thHgansfer squared]o is the zero-order Bessel function and
Sum of Square Errors$SE = YY' — B'(XY') and the  is the undimensional energy-dependent parameter menti
Mean Square Errorsf), given ass? = SSE/[n — (k + 1)], above. This equation was numerically evaluated, and de
where the denominator defines the number of degrees of freeare described in @ez-Peraza et al., 2000).
dom for errors, given by the amount gf - parameters con-
sidered in equatioril). Based on these estimators we can
then evaluate the uncertainty band with@(1 — «)% of  aple 1. C(s), a~2(s) andA(s).
precision degree as follows: for fitting (prediction within the [~ 75T C(s) (GeV 2) [ a 2(s) (GeV 2) || A(s)

k
E(y) =) Bifilw:) (withzo =1) (1)
i=1

b, s) = /0 " 4dq G2Im f(g, $)Jo(a,b) @)

Which explicit expression is

range of data) by means of 13.8 9.970 2.092 -0.094
mep [ 2 Ao o1 19.4 10.050 2.128 0.024
INTB=y=£t,, {5 A (X X) } @ | 235 10.250 2174 0.025
o 30.7 10.370 2.222 0.053

for extrapolation with 4.7 10.890 5999 0.079
N L a1 L2 52.8 11.150 2.370 0.099
EXTB=y+t,,5{s [1 + A (X X) A] ©) 62.5 11.500 2.439 0.121
546 18.500 3.540 0.182

Herey denotes the central prediction corresponding to the 630 19.210 3.590 0.184

set data included it — matriz, t2 7 denotes the so called [ 1800 27890 4.170 0.197
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4 RESULTS

Table 1 contains the energy /s, and the model parameters
C(s), a~?(s) and A(s), obtained through the method des-
cribed in (Pérez-Peraza et al., 2000). The first seven values
correspond to the same energies employed in (Martini et al.,
1977). A second-order fitting of the values C(s), o2(s) of
Table 1 and a linear fitting of the A values have been obtai-
ned from the next expresions:

C(s) = 19.24521 — 2.86114 In(s) + 0.22616 In(s)>  (7)
a~% = 1.8956 — 0.03937 In(s) + 0.01301 In(s)? ®)

A(s) = 0.01686+0.00125 (1 - e In(s/400)/0.18349)

0.19775 (1 _ e—ln(s/400)/3.74642) ©)

Using the procedure described through equations (1) - (3),
g the p gh eq ‘

30

25

C (s) (GeV?

i
[

10}=-

Ln (s)

Fig. 1. Fitting of C(s) with upper and lower bounds, including all
available accelerator data (black squares) and employing only the
ISR accelerator data (dashed curve).

we have determined the Upper and Lower bounds for C(s),
a~2(s) and A(s) at each one of the energy values. The re-
sults are shown through figures (1) - (3). The specific deter-
mination of the uncertainty associated with o/ values was
done by the previous evaluation of the corresponding Upper
and Lower bounds of the free parameters (C; a, A ). The

obtained results are shown through figures (4) and (5).

5 DISCUSSION AND CONCLUSIONS

The values of the free parameters of the model and their
corresponding fittings obtained in this preliminary approach
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Fig. 2. Fitting of o~ ?(s) with upper and lower bounds including all
available accelerator data (black squares) and employing only the
ISR accelerator data (dashed curve).
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Fig. 3. Fitting of A(s) with upper and lower bounds including all
available accelerator data (black squares) and employing only the
ISR accelerator data (dashed curve).

are not yet the best ones, however, the analysis of figures .
(1) — (5) shows that as data becomes more scarse, as it hap-
pens as energy increases, the uncertainty. interval becomes
wider, which indicates an information lost in the predicted

values; obviously, this lost is reflected on the 072" predicted
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Fig. 4. Interpolation and extrapolation of of?, values (black line)
with upper and lower bounds (dashed curves), employing only the
ISR accelerator data.
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Fig. 5. Interpolation and extrapolation of o??, values (black line)
with upper and lower bounds (dashed curves), employing all avai-
lable accelerator data. Dot-dashed line is the central line of Fig.

(4).

values. We can observe in figures (1) — (3) that the diffe-
rence between both curves, that limited to the ISR accele-
rator data given in (Martini et al., 1977)(hereafter M & M)
and that including 546, 630 and 1800 GeV data is increa-
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sed as the energy is increased. Nevertheless, the uncertainty
band of our study gives consistency to both works. In figure
(4) we can note that as energy is increased the uncertainty
associated to the predicted o£2! values also is increased; no
difference is seen between the predicted values of the inter-
polation of M &M and the prediction of our interpolation (the
solid line), because we are dealing with the same seven va-
Iues of the ISR accelerator data. It is also notorious in figure
(4) that the uncertainty is very large at high energies. Howe-
ver, if more points are added to the prediction process (e.g. at
energies 0.546, 0.630 and 1.8 TeV), the uncertainty at high
energies is decreased as it can be seen in figure (5), where
it is shown the interpolation employing all available accele-
rator data (white boxes) and extrapolations (black squares);
the dashed line corresponds to the central curve of figure (4)
when only the ISR data is considered.

Though this is a preliminary study and fittings of the free
parameters can be improved, we conclude that the employe-
ment of a trusful statistical method to delimitate highly con-
fident uncertainty bands leads to obtain highly precise extra-
polation results. The use of the Forecasting method in the
specific case of a,t,f;f, limitates the high energy values of Uf,‘,’f
to a narrow band which seems to be consistent only with the
analysis of (Nikolaev, 1993), obtained from Cosmic Ray ex-
periments. A relevant discussion about the implication of

trusty o2, is given in (Pérez-Peraza et al., 2000).
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