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ABSTRACT

We propose the use of the WKBJ method to simplify the solution of transport equations in collisionless
plasmas. This technique is illustrated with the solution of a Fokker-Planck type equation, for the specific case
of particle acceleration in solar flare sources. We derive analytical expressions for the time-dependent and
steady state spectra that are valid over the entire energy range of the accelerated particles and fit correctly the
numerical results of other authors. The derived spectra correspond to a momentum diffusion coefficient
D(p) ~ p"/B (n = 2, corresponding to Fermi-type acceleration). The analytical spectrum in the transrelativistic
domain is of particular importance, for instance, in the study of solar radiation emissions produced by the
interaction of the energetic particles with matter and electromagnetic fields. The study is developed for two
kinds of accelerating turbulence, MHD and Langmuir waves, and for monoenergetic injection, but we also
present semianalytical spectra for thermal-type injection and for injection from magnetic reconnection in a
neutral current sheet. We calculate the time for the time-dependent spectra to reach equilibrium at different
energies, and we show that the equilibrium time is sensitive to the kind of accelerating turbulence and slightly
sensitive to the kind of injection process. We analyze the effect of an energy-dependent particle escape,
7(E) ~ B~* for u =0, 1, and 2 on the particle spectrum.

Subject headings: acceleration of particles — plasmas — Sun: particle emission

1. INTRODUCTION

Transport of matter and energy is a very general problem in many fields of science, particularly in the physics of fluids. The
corresponding transport equations are solved by different mathematical techniques according to the peculiarities of a particular
problem. In general most of those techniques are applied when the transport equations may be reduced to a very specific kind of
equation (e.g., Bessel, Legendre, etc). The method described in § 2 allows us to approach a wide range of problems since its
application requires only that the transport equation be reduced to a linear differential equation. To illustrate this, in this paper we
apply such a method to the specific case of determining the energy spectrum of particles during their generation in solar flares.

The knowledge of the energy distribution of energetic particles that have been accelerated in astrophysical sources is a fundamen-
tal problem within the context of phenomena taking place in plasmas. The importance is based on the fact that such distributions
contain implicitly the inherent information about the properties of the acceleration process itself, the source structure and physical
conditions prevailing therein during the particle generation process, and the characteristics of the traversed media during particle
transport. Derivation of the energy spectra of cosmic particles may be done by several different methods, for instance, by thermody-
namic equipartition between gas, particles, and electromagnetic fields (Syrovatskii 1961), or by solving the motion equation of
individual particles in definite source magnetic field topologies (Pérez-Peraza, Galvez, & Lara 1977, 1978). The formal and rigorous
method is to establish a transport equation for the density of particles in the phase space: within this frame, the more general
method is by means of the kinetic theory (e.g., Schlickeiser 1989), although a magnetohydrodynamic (MHD) approach is also used
in the case of strong turbulence, particularly when the medium density and the magnetic field strength are high enough (e.g., Priest
1982; Byakov 1992).

Among the kinetic approaches, the most common formalisms in the study of the evolution of the energy distribution of the
accelerated particles are from the Vlasov equation (collisionless Boltzmann equation); by means of the quasi-linear theory, such an
equation leads to the Fokker-Planck equation for the gyrophase-averaged particle phase space density (Schlickeiser 1989). Further-
more, applying some simplifications and introducing the effects of spatial transport in a time escape (e.g., Wang & Schlickeiser 1987;
Steinacker & Schlickeiser 1989), a diffusion equation in moment space is obtained. This kind of equation may be in turn trans-
formed into a Fokker-Planck—type equation in energy space (Tystovich 1977; Melrose 1980). The latter equation can be also
derived from the Chapman-Kolmogorov equation (e.g., Schatzman 1966).

In cosmic-ray physics, several terms are usually added to the previously mentioned transport equation according to the pecu-
liarities of the scenario, as for instance, effects from the interaction of the energetic particles with matter and electromagnetic fields,
source and sink effects (external injection and disappearance by escape or transformations) and so on (e.g., Ginzburg 1958;
Schlickeiser 1984). In general, the establishment of the evolution equation of the energetic particles is not a difficult problem, as it is
the solution of the resultant equation. The first approaches to solve analytically this type of equation were related to solutions in
limited energy range: in the ultrarelativistic range Kaplan (1956), Ginzburg (1958), Kardashev (1962), Ginzburg & Syrovatskii
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(1964), Tverskoi (1967), Ramaty (1979), and Melrose (1980); in the nonrelativistic range Tverskoi (1967), Ramaty (1979), and
Barbosa (1979). Analytical steady state solutions over the entire momentum space have been obtained by Schlickeiser (1984), Drége
& Schlickeiser (1986), and Steinacker & Schlickeiser (1989). Time-dependent solutions have been obtained numerically by Mullan
(1980) and Miller, Ramaty, & Murphy (1987) in the nonrelativistic range and by Miller, Guessoum, & Ramaty (1990) through the
entire energetic range.

In § 2 we apply the WKBJ method to solve transport equations in the volume of particle acceleration to obtain time-dependent
and steady state solutions over the entire energy range of the energetic particles. We illustrate the method for the case in which the
power of the particle momentum in the momentum diffusion coefficient is n = 2. In § 3 we discuss the rates and efficiencies of
acceleration of MHD and Langmuir turbulence. The injection spectra into the acceleration process is discussed in § 4. Results are
presented in § 5, where we give the analytical energy spectra for both types of turbulence, assuming monoenergetic injection, and
semianalytical spectra by assuming thermal-type injection and injection from a magnetic neutral current sheet (MNCS). The
comparison of our results with the results that may be obtained in limiting energy ranges with closed solutions and mumerical
results is also presented in § 5. We present results relative to the equilibrium time for a time-dependent spectrum to reach a steady
state at a given energy, and results regarding an energy dependent escape time. The accuracy of the WKBJ method is discussed in
§ 6, where we suggest the use of such method as an accessible form to derive particle energy spectra in broad energy ranges.

2. SOLUTION OF THE TRANSPORT EQUATION BY THE WKBJ METHOD

Let us assume that particles are accelerated by a stochastic process, such as those derived from relaxation of MHD and
Langmuir turbulence, etc. Within this context, particles gain energy through interactions with turbulence, undergoing small energy
changes, so that interactions may be seen as independent events; this allows one to study the evolution of particle fluxes from the
statistical point of view, by means of the distribution function of the interacting particles and the establishment of the corresponding
transport equation. Within the kinetic scheme of the Vlasov equation, one assumes a noncollisional behavior of the accelerated
particles among themselves, such that only interactions with the accelerating agents take place, and eventually with matter and
electromagnetic fields in the medium. In a wider context, within the kinetic schema, a more general equation is often employed that
contains not only stochastic acceleration by turbulence (of the type of Fermi second order), but also Fermi first-order—type
acceleration, including spatial transport (e.g., Schlickeiser 1989 and references therein): they assume weak electromagnetic field
turbulence of small amplitude, homogeneous in space and time in a given reference frame (e.g., Schlickeiser 1994). Under those
conditions, the gyrophase-averaged particle phase space density evolves according to the Fokker-Planck equation (e.g., Schlickeiser
1989), such that in the particular case of low-frequency MHD turbulence (whose magnetic field components 6B > dE-electric field
components) and particle density highly isotropic (that which can be produced by an external agent, e.g., Atcherberg 1981; Melrose
1986) the Fokker-Planck equation can be reduced to a diffusion-convection equation for the pitch angle—averaged part of the phase
space density (Jokipii 1966; Haselmann & Wibberentz 1968; Forman & Webb 1985; Schlickeiser 1989) which in its most general
form contains terms of spatial transport (diffusion and convection) and terms of acceleration (momentum convection and momen-
tum diffusion). The scattering time method has been used to separate the spatial transport from the momentum transport part of the
equation by an approximated procedure that may be applied under certain circumstances (Wang & Schlickeiser 1987; Steinacker &
Schlickeiser 1989) where spatial convection and diffusion together with catastrophic losses are combined in the escape time: f{(r, p, )
is then expressed as an infinite sum of momentum-dependent distribution functions F(p, t), in such a form that second-order and
higher order terms are neglected because the main contribution is given by the first term. Such a neglect is widely justified for
momentum values of the solution far away from the injection threshold value p, ; however, as in any solution of a diffusion equation
these higher order terms become highly important at the level of the sources (around p,). Furthermore, when it is considered only
acceleration by small amplitude MHD turbulence (second-order Fermi type) the diffusion-convection equation in momentum space
for the pitch angle-averaged particle density is reduced to an equation that contains a term of escape, and eventually a source
function (e.g., Droge & Schlickeiser 1986). Some less general formalisms of the problem which do not consider spatial transport in
the establishment of the equation also lead to the following well-known momentum-diffusion equation (e.g., Rosenbluth, MacDon-
ald, & Judd 1957; Tsytovich 1977; Melrose 1980):

¥ _ 13 o, 9
o =5 ap[pzvcp) o ] M

Obviously, this is a particular case of the transport equation as derived by Droge & Schlickeiser (1986). Here f(p, t) is the pitch angle
averaged—density of particles of momentum p interacting with turbulence at time ¢, and D(p) is the diffusion coefficient character-
izing the interaction dynamics between particles and the specific type of turbulence, which is assumed to be homogeneous and time
independent (Tsytovich 1977; Melrose 1980). For Landau-Cherenkov resonance D(p) ~ p"/B, and for gyroresonance D(p) ~ %"/,
(where # = [c/Ze]p is the particle magnetic rigidity), we can write D(p) = D*p"/f, where D* contains the information about the
specific acceleration efficiency and the kind of particle. Owing to the presence of the local magnetic and photonic fields and matter,
the acceleration process is not an isolated process, but particles may actually simultaneously undergo other processes that
continuously modify their momentum distribution f(p, t) as for instance energy losses from synchrotron radiation, inverse
Compton-scattering, bremsstrahlung, Coulomb collisional interactions (nuclear and electronic stopping), adiabatic energy changes,
and energy degradation by nuclear collisions, as well as other source effects such as external injection, or sink effects such as nuclear
transformation or other catastrophic losses, escape by spatial diffusion, drifts, convection, etc. Sink effects are usually considered by
a characteristic escape time, 7 (e.g., Ginzburg 1958), and are sometimes parameterized by a momentum-dependent escape time (e.g.,
Lerche & Schlickeiser 1985). These additional effects may be incorporated into the particle evolution equation (1) to obtain a more
realistic description of cosmic particle spectra (e.g., Schlickeiser 1984; Droge & Schlickeiser 1986). Ramaty (1979) has solved
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equation (1) in energy space in the time-dependent and steady state cases for the limiting ranges of nonrelativistic and ultrarelativis-
tic energies, with either no escape or an energy independent escape time t. Besides, by combining first- and second-order Fermi
acceleration and shock wave-regulated escape with diffusion and convection, Steinacker & Schlickeiser (1989) derived solar particle
spectra from the steady state solution of the resultant momentum diffusion equation, which holds for the entire particle momentum
range; however, the time-dependent solution of the composed momentum-diffusion equation has not yet derived, nor has an
analytical solution over the entire momentum space from nonrelativistic to ultrarelativistic velocities been obtained.

An alternative route to solve equation (1) is by its transformation into a Fokker-Planck-type equation in the energy space of
particles (e.g., Ginzburg & Syrovatskii 1964 ; Tsytovich 1977; Ramaty 1979; Melrose 1980):

2
N gf f) ; ai"’ [DE)N(E, ] — — [B(E)N(E 9, @

where E is the particle kinetic energy, and N(E, t) = 4np*f(p, t)/v is the number of particles per energy interval at time ¢,
D(E) = {(dE?*/dt) = 2v2D(p) is the diffusive energy change rate produced by the dispersion in energy gain around the value of the
systematic energy gain rate, given by B(E) = {(dE/dt) = p~%@/dp)[p*vD(p)]. By arguments similar to those of Ginzburg (1958) or
Schlickeiser (1984), the effect of systematic energy losses or any other systematic acceleration effect may be introduced in the second
term of the right-hand of equation (2) by setting A(E) = B(E) + additional systematic energy change processes. Also, a source term
Q(E, t) is added, (indicating external particle injection into the acceleration region) and a sink term; that, in the first instance, may be
assumed to describe any kind of particle disappearance process from the acceleration volume by means of characteristic disap-
pearance time t(E, t). Thus, employing these arguments, equation (2) is usually rewritten as

ON(E, 1) 1 & N(E, 1)
% " 2E [D(E)N(E, )] 3 [A(E)N(E Nl — & 0

Here, A(E) contains the systematic effect of stochastic acceleration and deceleration processes as well as any eventual secular
(deterministic) energy change effect. D(E) contains the diffusive effects due to dispersion around the systematic energy change rate
A(E). Although to solve equation (3) a number of simplifications are usually performed, there is not at present an analytical
time-dependent solution for the entire particle energy range. Analytical expressions have been derived only in the asymptotic ranges,
E < mc? and E » mc? (mc? = particle rest mass) (e.g., Melrose 1976, 1980; Barbosa 1979; Ramaty 1979). Particularly, the time-
dependent solution in the transrelativistic range has been studied only by Monte Carlo simulations or numerical methods (e.g.,
Miller et al. 1987, 1990), but such methods are highly computer intensive. However, as pointed out by Miller & Ramaty (1987) and
Miller et al. (1990) the spectrum of protons in the transrelativistic region is very important for the production of neutrons, pions, and
gamma-nuclear lines in solar flares. Nevertheless, in the steady state situation the transrelativistic range can be studied by the
analytical solution of Steinacker & Schlickeiser (1989).

Among the usual simplifications taken to solve equation (3) are to assume time independence for the escape and injection
functions as well as a time-independent and energy-independent acceleration efficiency (constant). Also, a nondiffusive particle
escape is considered, by means of an energy-independent escape time, via a leaky-box loss term (r = constant) or occasionally via
1 = 1(f) (e.g., Droge & Schlickeiser 1986). In addition, a thin geometry is often considered for the source so that energy loss
processes are neglected during acceleration, what is valid rather in flares of long-duration. To avoid some of these simplifications we
herein propose the use of the WKBJ technique to solve equation (3) over the complete energy range of the accelerated particles. The
WKBJ technique is a useful tool with which to solve linear differential equations of any order. The application of this method to the
solution of the transport equation of accelerated particles at the levels of their sources has been preliminarily reported by Gallegos
& Pérez-Peraza (1990) and Pérez-Peraza & Gallegos (1994a). Herein, we will describe it more extensively. Since we have no
confident inferences about the time dependence of the injection process, we retain, for simplicity, the general assumption that the
flux N(E, t) is being injected at a rate Q(E) = g(E)®(t) = q(E) [where O(t) is the step function] and is escaping at arate t .

+ Q(E, 1) . A3)

2.1. Solutions for Any D(p)
2.1.1. Time-dependent Solution for Any D(p)

Equation (3) cannot be exactly solved, unless A(E) and D(E) have a very peculiar functional form; in the case of the Fermi
acceleration process, this occurs when the particle velocity in terms of the light velocity, § = 1. The exact solution for this case is
derived in Appendix B. For a solution with any f value some approximations must be done, provided that no substantial
information is lost by applying a given kind of approximation.

For the time-dependent solution we propose the following approach; we will later test the validity of such approximation. Let us
take the Laplace transform of equation (3), which reduces to

NE, 5
HE)

where A = A(E), D = D(E), and s is the Laplace variable. Developing the third and fourth term of the previous equation and
reordering them yields

sN(E, s) — N(E, 0) + 25 [AN(E 5)] — E2 [DN(E )]+ ———=0(E,s),

d*N [A 2 (_)] aN [s 1 d4 d’D] N O(E,s) N(E,0)

42 " |D D dE YEE|D " Db "D
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P, = —[(4/D) — (2/DXdD/dE)] , @
P, = —[s +(1/1) + (dA/dE) — (d*D/dE*)]/D = —[s + a(E))/D ,
and
Py = —[Q(E, s) + N(E, 0)]/D,
equation (3) becomes
IR, p, I, b (g 9= P, ), ©

dE?

where N(E, s) denotes the Laplace transform of N(E, t).
By first making the variable change dn = g~ *dE with g = exp [[§, P,(E)dE'], (where the prime indicates the integration variable
and E, is the injection energy into the acceleration process), equation (5) may be reduced to the normal form (Arkfen 1970):

dE

L0 1 Rer 9,9 = i ) ©
where
R(n, s) = g°P, )
and
B, ) = —gL00r, ) + N, /D . ®

To solve equation (6) we follow the conventional route; first it is solved for the homogeneous part, and subsequently a particular
solution is obtained. The solutions of the homogeneous part of equation (6) are obtained by the WKBJ method, provided the
following criterion is fulfilled, (e.g., Mathews & Walker 1973):

|(dR/dn)/R*?| < 2.

In Pérez-Peraza & Gallegos-Cruz (1994a) we discuss the conditions for which this inequality is satisfied in solar particle sources.
The evaluation of this inequality gives us one of the options to determine the accuracy of the WKBJ method; two other alternatives
are based, respectively, on the intrinsic relative error in the WKBJ solution (Bender & Orszag 1978) and on the error control
function (Olver 1974) that we have considered in Appendixes A and C respectively. Now, according to Mathews & Walker (1973) if
P, > 0 the solution of equation (6) is oscillatory, so that when the previous inequality is fulfilled the two independent solutions of
the homogeneous part of equation (6) [when P < 0, and hence R(#, s) < 0] are given by N, = C, N,(n, s) + C, N(n, s), where C,
and C, are constants to be determined from the boundary conditions of the problem, and

n E
Ny, =R""@n,s) exp {¢ J [R(VI'S)]‘”d'I'} = exp [$ J
no

Eo

PY*(E, S)dE’]g' YXE, s)P; V'E, s) . ©

The particular solution of equation (6) may be obtained by the method of the Green function (e.g., Arfken 1970),

E

N,E, 5) = '[ WE', S)G(E', E, s)dE' , (10)

E
where E, < E' < E, G(E', E, s) = — N (E, s)N,(E', s)/W(E', 5) is the appropriate Green function of equation (6), and it is built with
the homogeneous solutions given in equation (9). W(E', s) is the Wronskian of N, and N,.

Now, remembering that R = g2P, and dn = g~ 'dE, the appropriated Green function for the variable E may be written as

G(E, E', 5) = (—1/2[g"((E)PY(E, s)g~ "(E)PI*(E', 5)] 7" exp [—JEPi’z(E”)dE"] . (11
-

Formally, the general solution of equation (6) for the variable E is Ng = C, N (E, 5) + C, N,(E, s) + N (E, s), where C, and C, can
be evaluated from the boundary conditions of the problem. In the context of the evolution of cosmic particles the following
conditions are required:

1. The spectrum decreases (N — 0) as the energy increases (§ — 1).
2. N tends to a constant value as the energy tends to the injection threshold value (E — E,).

Since N, is an increasing function of energy, it follows that C, = 0. Furthermore, it can be seen from equation (11) that both
conditions (1) and (2) are completely satisfied by the Green function, so that within the frame of the energy spectrum of cosmic
particles the two homogeneous solutions N 1,2 are not necessary in the general solution. Consequently C; = C, =0, and the
solution of equation (3) is entirely described by the particular solution. Substituting equations (8) and (11) into equation (10), the
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WKBJ approximation for the general solution of equation (3) becomes

E, s)+ N(E', 0 1(E . [E .
No(E, s) = N(E, s) = ( )P U4(E) f [ Plfz(E,)DEE,) )] exp[——-i L PydE" - L ,Pi/sz ]dE 12)

By introducing the explicit form of P,(E) we obtain

DY4(E)  (* {[q(E)s] + N(E, O 1 (" E
2[8 + a((E))]lM - %g/(‘th){;SS-: a((El)]l/)E €Xp {_ 5 L,Pl dE" — L/D I/Z(E)[s + a(E”)]llsz”}dE, s (12')

where E, < E” < E' < E and, using the assumption Q(E, t) = q(E), so that Q(E, s) = g(E)/s. To meet the requirements of the WKBJ
method a(E) must be a slowly varying function (which is the case for acceleration by MHD and Langmuir turbulence, as we will
show later); hence, we can approximate a(E”) ~ a(E’) ~ a(E), or take their average values between E, and E (though this approx-
imation is not necessary in the stationary case). Therefore, describing such an average value by a, equation (12') becomes

NG(E, t) ~ (%)DIM(E) f N(E’ 0) expgslf(lE/z) IE P dE"] {exp [_ (S + a)l/Z j;: DgTE(”E”_i]/(s + a)x/z} dE’'

1 E —(1/2) {§ P,dE" £ £ dE’
+<5>D‘/“(E) L.,q( el (D/s/z(if) = {eXp [—(S+a)”2 L , D,,Z—(E,,)]/s(s+a)”2}dE’, (13)

N(E, s) ~

where % ! indicates the Laplace inverse transform. Effectuating the Laplace transforms (see Appendix B) equation (13) becomes

1/4 E ’ E 2
NG(E, t) ~ D (E) N(E, 0) exp {_a ; J P1 dE" — 4lt [J‘ —1/2(E”)dEﬂ:| }dE/

()2 Jg, D3Y(E)
DY4E E') 1 (% 1 | |
(47!)5/2)_' rl/2 f D§§4(E, €Xp {—-at' — _2 J Pl dE” 4t J‘ DIIZ(E")d " }dEl . (14)

The method for carrying out the integration appearing in equation (14) is described in Appendix B. Hence, after integration in time
we obtain the time-dependent WKBJ approximation for the general solution of equation (3), namely,

1/4, E _ /’ 0 1 1/2
N(E, t) ~ ’()M)fﬁ) ] e7;;)3/(4 ( E’f)‘) [N (f/z ) exp ( —at — %) + (9(’;‘) q(E)RA(E', E)]dE’ , (15)

where
E E
R, =3 f PdE", R,=1% j D~Y*(E")dE" ,
E’ E’

R, = [erf (Z,) — 1] exp (2R, a'’?) + [erf (Z,) + 1] exp (—2R, a'/?),
Z,,=(a)'* £ Ryt 12,
a = a(E) = (1/7) + 0.5[R4(E) + R4(Eo)] ,
and where (according to the definitions in eq. [4]),
R,(E) = (dA/dE) — (d*D/dE?) .

It should be noted that by making ¢t — oo in equation (15), the first term becomes null and [erf (Z,) + 1] — 2.0 in the second term
(see eq. [B13] of Appendix B) and we obtain the corresponding stationary solution (eq. [24], below). Equation (15) gives the
time-dependent energy spectrum of particles escaping with a probability ™! from the source, where they have been accelerated at
the rates A(E) and D(E) (by any stochastic process) after an instantaneous injection N(E, 0) and a continuous injection g(E).

According to the precepts of the Laplace transforms the first term of equation (15) must be associated with a pulse in time
(injection at t = 0), whereas the second term is associated with a continuous injection at ¢ > 0. Therefore, each one of the terms
appearing in equation (15) that determine the instantaneous particle energy spectrum at any time has a specific interpretation
according to the initial conditions of the acceleration process, that is, according to the specific peculiarities of the astrophysical
scenario. Hence, those two terms are mutually exclusive.

2.1.2. Steady State Solution for any D(p)
For the stationary solution, the left-hand term of equation (3) is null, so that by developing and arranging terms it can be
rewritten as
d’*N dN

gz PP T PN =/, (16)
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where P, and P, (with s = 0) have the same meaning as in equation (4) and f = —q(E)/D(E). Equation (16) may be rewritten in
normal form (Arfken 1970) as

d*N(n)
dn?

where R(7) = g?P, and h() = g*f. If the criterion given in the inequality below equation (8) is fulfilled, the solutions of the
homogeneous part of equation (17) when R(n) < 0,(P = —a/D < 0) may be obtained by the WKBJ method, yielding

+ R(mN(n) = hin) , (17)

n

N, 5(n) = R(p)™*"* exp I:T— .[ R(n’)”zdn’] . (18)
no

The particular solution of equation (17) may be built by the Green function method (or by the method of variation of parameters). In

the variable E this solution is

N,E)= ‘[ EG(E, EWE)E' , (19)
Eo

where G(E, E’) is similar to G(E, E’, s) given in equation (11), but with s = 0.

Now, following the same arguments as in the time-dependent case (below eq. [11]), the Green function satisfies all the boundary
conditions because it remains finite as E — oo and is a constant when E — E,,. Therefore, the homogeneous solutions are irrelevant,
so that the solution of the steady state transport equation is entirely described by the particular solution, equation (19), which may
be rewritten as

N(E) D1/4(E) E q(Er) exp l: 3 1

E E
~ -~ | P,dE" — VX END~Y*E")dE" |dE' . 20
201/4(E) - al/4(E/)D3/4(E/) 2 L, 1 d J;_’a ( ) ( ) ] ( )
Since the range of variation of a(E) is short, we could eventually take again a = TE} = (0.5)[R4(Eo) + R4(E)] (R, is the same as in
§ 2.1.1); however, this is not necessary (as it is in the time-dependent solution) but can be done for the sake of simplicity. With this
simplification the abbreviated expression of the general solution, equation (20), becomes

DYVYE) [* q(E)
2a1/2 o D3/4(E1)

where R; and R, are the same as defined below equation (15), in § 2.1.1. It can be seen that this equation is also directly obtained
from equation (15) by letting ¢t — co.

It should be noted that up to equation (20) we have not made any assumption regarding the escape time, 7, which appears within
the factor a in the time-dependent solution, equation (15), and the stationary solution, equation (20). In order to make comparisons
with the work of other authors, we will consider in § 4 the classical assumption of T = constant (mean confinement time) and
7 oc B~ * within the context of equations (15) and (20).

N(E) ~

exp (—R; — 2a'?R,)dE’ , 1)

2.2. Solutions for D(p) ~ p"/B
2.2.1. Time-dependent Solution for D(p) ~ p"/B

Let us consider a momentum diffusion coefficient of the form D(p) = («/3)p"/B, where o (= constant) is the parameter of turbulent
acceleration efficiency. In this case the systematic and diffusive acceleration rates are, respectively,

A(E) = z% a% [op2D(p)] = (%)c(n +2pmt = (g)(n +2)c2 gt : 22)

and
D(E) = 2v2D(p) = 2(e/3)c? "B+ 18" = 2(a/3)c? (& — m2cH)"t V2 g (23)

where & = E + mc?. Assuming an escape time 17! oc " 1£" 2 = §p" 1" 2, where § is a constant, the parameters a(E) and P,
defined in equations (4) are in this case,
a(E) = 6" 16" 2 + (o/3)c2 " 2 [(n — 1)3Bn 4+ HP 3 —2(n + 1L + 4711 (24)

s+a(E) o 1 s

PZ(E’ S) = D(E) - 2(&/3)02_"ﬂ2g2 + F [(n - 1)(3" + 4)3_4 - 2(” + l)ﬂ_z + 4] + z&m

1
= X i [s + a,E)], 25)

with a,(E) = (a/3)c® ™ "p" 16" 2[(d/B)* — 2(n + 1)], d = [(n — 1)(3n + 4) + 6/(a/3)c®>~"]V/2. Taking the average value of a,(E)
between E, and E, namely a,, introducing equations (22)—(25) into equation (13), effectuating the inverse Laplace transforms
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involved in that equation, and solving the integral in time (see Appendix B), we obtain

DY4E) (& —R)[NE, O R 1/2
N(E, i = 4705 ,2) I °’;§’,f4(E,)‘)[ (tlﬂ ) exp (—a,,t—-t—z) +o.5(§) dE)RAE, E)]dE’, (26)

where
E
R, = (l/Z)J PdE", P, = —[(A/D) - (2/D)dD/dE)], R,=(1/2)J,,

E
Jn = (3/2a)1/2c -2 —n)/ZJ. BII —(n+ l)/2€l/ —n/ZdEl/ ,
£

R4(E, E) = [erf (Z}) — 1] exp (2R, a,) + [erf (Z3) + 1] exp (—2R, a;/%),
Z,,=a,t)"? £t7'’R,
and & is the total energy of particles. Using the reasons mentioned below equation (11), equation (26) is the general WKBJ
approximation for the general solution of equation (3) for any power n of the momentum in the momentum diffusion coefficient.
Fermi-type acceleration corresponds to D(p) ~ p?/P.

Equation (26) has a similar form to equation (15), such that when t — oo, the corresponding steady state expression is obtained. It
should be noted that when n = 2 in equation (26) we obtain the solution given in equation (15).

2.2.2. Steady State Solution for D(p) ~ p"/B

By assuming the same momentum diffusion coefficient as in § 2.2.1, the rates A(E) and D(E) and the parameter a(E) are the ones
given in equations (22)—(24) whereas P, is now,

af) b
D(E) ~ (@3)c* "p*8*

~ s -1 @m+) 2] 1 (n—1
= @) P +[ o TR "«ﬂ]%’ﬁ [“’2 T ]

P,(E) = + ﬁ,,,,llé,z [(n— 1B 2+ (n+ 1t —2p"*1]

where

o =[3//3)c* " +(n+1),

_[B)  of, =D of @-1
Pglz(m - [D(E)] ~ ﬂg [1 + c02ﬁ2 ] ~ ﬁ& [1 + 20)2ﬁ2:| ’
the solution in this case is

1/4 E _ n ~lo+®-1/20 —
N(E)=D (E) a(E) (-{ & m’c‘)’2(6’+ﬁ6’)[ o )]exp[—n l(ﬁ“—ﬂ'—l)]d’. 27

and

2a4(E) Jp, dHEDTHEV\ENT —m?c*) \&+p& 20

It should be noted that when n = 2 in equation (27) we should obtain the solution given in equation (20); however, this is not exact
due to the approximations applied in passing from equation (12') to (13).

3. ESTIMATED ACCELERATION EFFICIENCIES

To apply the solutions developed in § 2 to the study of particle energy spectra, the establishment of the specific convective and
diffusive energy change rates, A(E) and D(E), is required. As stated before, both rates depend on the momentum diffusion coefficient
D(p) which characterizes the interaction dynamics between particles and turbulence. Extensive work has been done in the literature
related to momentum diffusion coefficients for different kinds of turbulence (e.g., Tverskoi 1967; Kulsrud & Ferrari 1971; Tsytovich
1977; Melrose 1980, 1986; Schlickeiser 1989; Dung & Schlickeiser 1990; Steinacker & Miller 1992). Here we reduce our study to
specific applications of MHD and Langmuir turbulence, neglecting energy losses during the acceleration process because our goal is
to compare the derived spectra by the WKBJ approximation with existing confident time-dependent spectra, which in general do
not consider energy losses.

3.1. Acceleration by MHD Turbulence

When energy from MHD turbulence is transferred to particles by wave-particle resonant interactions (Fermi-like process), we
have

D(p) = ap’/B . 28)
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By equating equation (28) with the diffusion coefficient D(p) = ap?/3B (Parker & Tidman 1958), which appears in the Boltzmann
equation when the scattering centers are considered to have a much larger mass than particles, the acceleration efficiency (when the
turbulence is of the kind of the magnetosonic modes) is (e.g., Melrose 1986)

o = 3(n/B)*CkX(V3/c)W In(Bc/Vy) , (29)
where ¥, is the phase velocity of the magnetosonic waves, f is the particle velocity in terms of the light speed,

kmin
W= J WK, )k’ ,
Kmax

is the instantaneous total energetic content of the turbulence (energy density per time unit), B is the average local magnetic field, and
<k is a characteristic wavenumber of the wavenumber spectrum, that can be calculated from (Achterberg 1981):

k) = W(t)*lr"“"k'w,,,,(k', fdk’
kml

with W(z) = instantaneous turbulence level, so that for a Kolmogorov spectrum [W, (k, t) = W(t)k >3], and then

k> = Akz kp) *{[1 — (kn/kp) Y11 — (kn/kp)**1} 1 em ™", (30)

where k,, and k,, are the minimum and maximum values of k.

A representative evaluation of  at the level of the sources is not an obvious task since W and k) are determined by unprecise
phenomenological criteria.

The estimation of W is hence usually based on the fact that in most of astrophysical plasma sources W < nKT (Kaplan &
Tystovich 1973) and on some observational inferences (e.g., Smith & Breach 1989): (k) is estimated from the extreme values of the
magnetosonic turbulence, k,, and k,,, which in turn are inferred from the extreme particle energy values according to the natural
cutoff of the magnetosonic turbulence (e.g., Tverskoi 1967), and from the assumption that wave-particle interactions occur mainly in
the range of wavelengths much larger than the particle gyroradius (1 > p,).

The rates of wave particle energy interchange in the case of a Fermi-like process involving MHD turbulence are derived from the
previous definitions of the systematic and dispersive rates as follows:

AB= <%> =97 5 0] = (;)“P °” G)"‘” e (g)w + 2m B G
D(E) = {dE?/dt) = 2v*>D(p) = (2/3)aB>&* = (2/3XE? + 2mc*E)**/(E + mc?) . 32

3.1.1. Acceleration Efficiency for Protons by Fast Magnetosonic W aves

In the estimation of the efficiency o for acceleration of protons in a coronal flare source (T = 107, n = 5 x 10° cm ™3, B = 100 G),
it is considered, (Miller 1991) that wave-particle interactions occur with protons whose velocities are in the rangem, _ ,v/2 up to 10
GeV (where v, is the Alfvén velocity) assuming 4 = 10p,, where p, = fm, c*/eB, the values k,, = 2n/4y and ky, = 2m/A,, are derived
for 10 GeV protons and Alfvénic protons, respectively. Hence from equation (30) we obtain (k) = 3.2 x 10~ cm~!. Taking
Ve = v, for the fast magnetosonic mode, and assuming that W is continuously regenerated (i.e., it remains constant) with a value
W = 0.1 ergs cm 3 (e.g., Smith et al. 1989; Miller 1991), we obtain from equation (29) 0.045 s™! < « < 0.137 s~ ! in the particle
energy range (1-1000) MeV. In more realistic situations « must be probably lower than this estimated value due to the decrease of W
by the effects of collisional wave damping. In fact, Miller et al. (1991) use « = 0.03 s~ * for evaluations of the proton energy spectrum.

3.1.2. Acceleration Efficiency for Protons by Slow Magnetosonic W aves

The eventual resonant acceleration of protons in coronal flares by the slow magnetosonic mode is disregarded because the strong
damping of this mode by collisional processes. However, toward chromospheric levels the acceleration by the slow mode may
become feasible as shown by Gallegos-Cruz et al. (1993). Nevertheless, we will not deal in this work with this option.

3.1.3. Acceleration Efficiency for Electrons by Fast Magnetosonic W aves

Acceleration of electrons is feasible by both magnetosonic modes, the fast and the low, in the regime of 4 > p,. For the interaction
of electrons with the fast mode it should be remembered that the high-frequency cutoff for this type of turbulence occurs in the
gyrofrequency of thermal protons, ie., at wy ~ Q, = 9.65 x 10* B Hz, (e.g., Braginskii 1965). Since k), = w,,/ V,, hence in coronal
sources ky = 3.13 x 1072 cm ™" when V, is evaluated in ¥,, and so wy, = 9.53 x 10° Hz; for electrons with a minimum energy,
corresponding to the Alfvén velocity p, = 3.24 x 102 cm, so that for A\ = 10p,, k,, = 2m/Ay = 3.58 cm ™! [corresponding to a
frequency w,, = 1.1 x 10° Hz, which is much higher than the upper cutoff frequency wp(~Q,) for this kind of turbulence].
Assuming that interactions occur for wavelengths A > 10p, (Miller 1991), i.e., ky < 21/10p, (p, < 27/10k ~ 200 cm) and using
p, = B&/eB it is found that wave particle interactions occur with electrons whose energies are f& > 6 MeV, that is, electrons with
E < 6 MeV in coronal flare sources are excluded from the resonant interactions with the fast mode. To estimate a in this case let us
assume an upper cutoff energy for electrons E,,,, = 500 MeV, so that taking again 1y = 10 p,, then k,, = 2n/l\ = 3.76 x 10~3
cm™!; consequently from equation (30) <k) = 2.67 x 10* cm™*, and hence for the range (6-500) MeV we obtain from equation (29)
« = 1.145 s~ (with an error of 0.1%). This means that the fast magnetosonic turbulence is highly efficient in accelerating electrons
but requires electrons with energies >6 MeV, which is highly restrictive at the level of solar sources even if they proceed from a
preliminary acceleration stage.
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3.1.4. Acceleration Efficiency for Electrons by Slow Magnetosonic Waves

Another alternative is the interaction of electrons with the slow magnetosonic mode (Gallegos-Cruz et al. 1993). In flare
conditions the high-frequency cutoff is the same for both magnetosonic modes since it is determined by the gyrofrequency of
thermal protons; however, the phase velocity of the slow mode is close to the velocity of sound (V, = V), such that ky, = w,/V, =
3.05 x 1072 cm ™, and, hence, the interaction occurs for electrons with p, < 20.6 cm, (i.c., for electrons with & > 0.617 MeV)
corresponding to E > 290 keV, which is still a restrictive value in solar source conditions but easily satisfied when there is a
preliminary acceleration stage. To evaluate (k) it can be assumed that E,, = 500 MeV, which entails p, = 1.67 x 10* cm, so that if
Ay = 10p, then k,, = 21/10p, = 3.76 x 10~° cm~*, in such a form that (k) = 6.33 x 10~* cm . Consequently, for electrons in the
range (0.3-500 MeV) the eﬂ‘fciency remains practically constant (within a relative error <2%) with the value a« = 0.042 s~ 1. This
means that electrons of 300 keV need only a relatively modest acceleration efficiency value to be reaccelerated up to 500 MeV by
interactions with the slow magnetosonic mode. It should be mentioned that at lower temperature and higher magnetic field strength
(toward the chromosphere) the threshold energy for acceleration by the slow mode decreases drastically: for instance, for T = 10°
and B = 200 G, even thermal electrons are able to be accelerated (Gallegos-Cruz et al. 1993).

3.2. Acceleration by Langmuir W aves
For resonant acceleration by Langmuir turbulence, the momentum diffusion coefficient may be expressed (e.g., Tystovich 1977;
Melrose 1980) as
ku W(k)
@plv k3

where w, is the plasma frequency and W(k) is the energy spectrum of the turbulence (energy density per wavenumber k and time
unit). Therefore, the corresponding rate is

dE 10 _, 2n2e? I:mzc“ (a) ) 202 [k _ ]
=)= = W —2 —2 W k k 3dk Py
A(E) < dt> 2 [p*vD(p)] ’ ys 0 )T 2 - (k)

2ne’w?
D(p)=—="* dk , (33)

where p = Bé&/c is the particle momentum. Assuming W(k) = W, k™52 (e.g., Borowsky & Eilek 1986), and taking k,; — oo (e.g.,
Melrose 1980) we obtain
KiWo [m*c* oy (4 pr2 32 5\,2 _
= —_— - = —_— 1—(-—- 1

A(E) 7 [ 57 p* + 9 I K, r 9 B*] energy s (34

where
2n2e?c’? _
KL:KIVVO:T% energyzs 1.

In a similar form, for the dispersive rate we have

D(E) = <dE2 _ 2v2D(p)=4uzzzw§ J"‘" W(k) ik

dr e K
considering again W (k) = W, k~3/2 and k,; — oo, we obtain
8n2e2c’? 4 4 _
D(E) = 0w W, 7% = (§>K1 Wop"? = (§>KL/37’2 energy”s™!. (39)

The energy density content of the turbulence, W,, may be estimated from the relation (U,,/Ug,r) = 1073(n./T>)"? (Rose et al.
1987), where Uy,r =nKy T and U, = |2 Wok™3dk = (2/3)W(ve/w,)*>. Using vy, = 2K, T/m)'/? and w, = (4nne’/m)'’? we
obtain U,,, = (2/3)Wy(Kp T/2nne?)>* (energy cm~3), so that W, = 4 x 10~ °n2/4/T5/* (eV cm ~3); therefore,

Ky =745 1072n/T5*  MeV2s!. (36)

Equations (34)—(35) are valid through all the energy range of cosmic particles. Melrose (1980) derived the corresponding rates in the
nonrelativistic and ultrarelativistic ranges.

4. THE INJECTION SPECTRUM

In order to compare our analytical spectra derived in § 2 with results of other authors, we have disregarded energy losses in the
energy change rates. It should be remembered that effective particle acceleration requires that the acceleration rate be higher than
the deceleration rate by collisional processes; hence, we are assuming a thin geometry in the source, so that energy losses during
acceleration may be neglected. In this form there is only one restriction for effective acceleration by the linear wave-particle resonant
process that requires that particles have » > V. Although this may be the case for electrons in very hot thermal plasmas, in general
it is not the case for ions. A selective injection process is needed to feed the linear resonant process with some amount of particles, in
order to be reaccelerated up to high energies. The problem of the injection is then narrowly related to the scenario of the global
energetic particle generation phenomenon. A qualitative discussion about a possible scenario has been discussed by Pérez-Peraza &
Gallegos-Cruz (1994b). For the injection process there are four different assumptions that fit within the frame of our analysis, two of
them are of the monoenergetic kind, and the other two describing well-structured energy distributions:
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(@) Instantaneous Injection:
N(E,0)= Nod(E — E,) (particles of energy E,) 37

where N, denotes the number of impulsively injected particles in a pulse at t = 0.
(b) Continuous Injection:

q(E) = NoS&(E — E,)  (particles s 1) (38)
(c) Injection from a Thermal Population:
q(E) = 2nNE'? exp (—E/Ky T)/(nK5 T)**  (particles per energy unit) (39

where N is the number of particles per energy unit with E > E,,.

(d) Injection by DC Fields from a Magnetic Neutral Current Sheet (MNCS):
According to Pérez-Peraza et al. (1977, 1978) the energy spectrum from acceleration in a MNCS topology, as that given by Priest
(1973),is

q(E) = 1.27 x 10*NBy(m/n,)"*(E}'*/E®*) exp [ — 1.12(E/E,)**]  particles eV ~* (40)

where N is the number of particles per energy unit with E > E,, B, is the background magnetic field strength in the MNCS,
E, = 1.34 x 10''[B3(m/n,)*/*]? (eV), m is the particle mass, and n, is the local number density. Hereafter, for evaluations of MNCS
spectra we will assume that particles are injected from below to the acceleration region so thatn = 5 x 10 cm ™3 and B, = 500 G.

5. APPLICATIONS: ANALYTICAL ENERGY SPECTRA FROM D(p) ~ P?/B

To illustrate the applicability of the solutions derived in § 2, we have chosen acceleration rates that correspond to the two
different kinds of turbulence analyzed in § 3, MHD and Langmuir waves. We have also considered the several assumptions
discussed in § 4 about the injection process: monoenergetic injection, in which case we obtain analytical energy spectra. For
thermal-type injection and injection from a MNCS, we obtain quasi-analytical spectra. According to the discussion at the end of
§ 2.1.1 the time-dependent spectrum describes both an instantaneous and a continuous injection, and the stationary spectrum
describes only continuous injection.

The parameter A4 in g(E) (eqs. [37]-[40]) appearing within the frame of N(E’, 0) in the first term of equation (15) indicates the
total number of impulsively injected particles in a pulse a t = 0 (instantaneous injection) and will be denoted by N, (particles). When
A" appears within the frame of g(E) in the second term of equation (15), then it indicates the number of particles injected per unit
time (continuous injection at ¢ > 0) and will be denoted by g, (particles s~ 1).

Regarding the parameter 7, this is related to the fact that particles do not remain indefinitely in the region of the stochastic
acceleration, but they disappear from the process either by escape or by nuclear transformation. The escape may be by spatial
diffusion, convective, by drifts, etc. and may or may not be a particle energy dependent process. In the case of escape by spatial
diffusion, it has been shown that it depends on the parallel spatial diffusion coefficient, K, (Jokipii 1977; Droge & Schlickeiser 1986;
Droge 1989): t(E) = I?/K, = 3I?/lv, where [ is the mean free path between wave-particle collisions, and L is the size of the
acceleration region. The last expression may be rewritten as ©(E) = K, B! in such a way that for typical parameters of a coronal
flare (T =107, n=5 x 10° cm~3, and L = 10° cm) we obtain K, = 3I%/lv ~ 1, if | ~ 10® cm. To determine the effect that an
energy-dependent confinement time, 7(E), has on the spectrum of the accelerated particles, we must consider this escape time within
the solutions of the transport equation derived in § 2, particularly within the factor a(E) defined below equations (15) and (20). To do
so let the escape time be represented by 7(E) = K, #7* such that u = 0 is equivalent to t = constant and u = 1 describes spatial
diffusion. In this work we analyze the case u = 0 and the case u = 1 (§§ 4.2.1-4.2.2). The cases u > 2 have been evaluated only by
using numerical methods (e.g., Press et al. 1986).

5.1. Spectrafor MHD Turbulence, Monoenergetic Injection, and © = cst., for D(p) ~ p*/B
5.1.1. Time-dependent Spectrum for MHD Turbulence, Monoenergetic Injection, and © = cst., for D(p) ~ p*/B
By using the MHD rates A(E) and D(E), q(E) = g, 6(E — E,) in equation (15) and the properties of the delta function we obtain,
(Bo/B)'“(8/80)'*(B3?60) " [ ( No AW ATEAS
~ -3 —ast— =) —1 Rs&o,
NME 1) (4na/3) 72 12) P\ =t~ ) T 2 \g,) Rl ®)
(particles per energy unit), (41)

where
Ry(&o, &) = [erf (Z,) — 1] exp [(3a,/@)'/2J ] + [erf (Z,) + 1] exp [(—3a,/0)'2J,];
Z,,=(a;0"? + (a/4at)*?J,;  a; = (a/3KF + 3/a1),
F=0S[B™" +38 =28+ 5" + 30— 2830; =& —mc)/s;
and

(1 + BY2X1 — i)
(1= B2 + B

J,=tan"'gY2 —tan"1BY2 + 0.51n
s

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJ...446..400G

J. - T 446, Z00G0

]

[T995A

410 GALLEGOS-CRUZ & PEREZ-PERAZA Vol. 446

5.1.2. Steady State Spectrum for MHD Turbulence, Monoenergetic Injection, and t = cst., for D(p) ~ p*/B
Introducing A(E) and D(E) for MHD turbulence and the monoenergetic injection spectrum in equation (20) we obtain

N(E) = (qo/2)a; a/3) /(B3> 80)~* (Bo/B)'"“(8/80)"* exp [—(3a,/0)*%) ] (particles per energy unit), “2)
where a, and J; are the same asin § 5.1.1.

5.2. Spectra for MHD Turbulence, Monoenergetic Injection, and t oc 1 /B, for D(p) ~ p*/B
5.2.1. Time-dependent Spectrum for MHD Turbulence, Monoenergetic Injection, and t© o 1/, for D(p) ~ p*/B

Let us take 7~ Y(E) = 5f (where 6 = 1/K, is a constant), which is the so-called case of escape by diffusion (e.g., Droge &
Schlickeiser 1986), so that the parameter a defined in equations (4) with the rates A(E) and D(E) for MHD turbulence becomes

a=a(E)=(/3)[B™" + B5* + 3B(1 + 6/0) — 3B, — 2(8* + B3] .
Now, by substitution into equation ( 15) we obtain a similar spectrum to that given in equation (41) but with E)=K,B7*.

5.2.2. Steady State Spectrum for MHD Turbulence, Monoenergetic Injection, and t oc 1/, Jor D(p) ~ p*/B
In this case the parameter a of § 5.2.1 becomes a(E) ~ (8 + a)f + (a/3)8 ! so that

3/a)o _ b? 1
with b = [(3/2)(6 + )]'/* and then [a(E)/D(E)]*"* = (b/B&) + (1/2b&B>). Now introducing in equation (20)

E
(=1/2) L P dE" =In(B/B),

and considering that

E E n ]1/2 & £ ~(b+1/2b) 1
exp| - [ Pra o {- [ [22] ar} - (222 )" e (52 )

so that for a monoenergetic injection as that given in equation (38), then the energy spectrum, equation (20) or (21), becomes

2 1/4 1/2 J —((b+1/2b) _ 1 i .
N(E) = @ /gfl/z:(ff(/gal /gfl/i f)(zg s [ 2. : ﬂi io] exp [(2_b “1_ B 1)] (particles per energy unit) . (43)

5.3. Spectra for Langmuir Turbulence, M onoenergetic Injection, and t = cst
5.3.1. Time-dependent Spectrum for Langmuir Turbulence, Monoenergetic Injection, and © = cst

In this case D(p) is that given in equation (33), so that using the rates A(E) and D(E) given in equations (33)—(35) into equation (15)
we obtain the following analytical spectrum:

(/8 )" _ 9J? do)/ 7\
NE O kg |1 oo~ =)+ (P

3)( a |1 —3\/a, |12
X {[erf (Zy) — 1] exp [(5)(1(—) J L] + [erf (Z,) + 1] exp [(T)(K_L) ]}] (particles per energy unit), (44)
L L

1/4 3 si -1 9
Ju=F) - FBy), F)= mc’[(1 L+ S + (;)ﬂ"’ + (5?—6)/99“] :

a, = a(E) = (1/0) + 45K, [HP) + HBo)],  H(B) = £~| 322877 + 417632 — 112 |
Zy2 = (@) + 3 /MK, 02

and K is the parameter of acceleration efficiency defined in § 3.

where

5.3.2. Steady State for Langmuir Turbulence, Monoenergetic Injection, and © = cst

Introducing the acceleration rates for Langmuir turbulence, equations (34)—(35), that were derived from the diffusion coefficient
given by equation (33), into equation (20), we obtain

3qo(8/&)'? -3 (a;\'? . .
N(E) ~ «aL‘;é)i)l/ﬂ;()i,/* rE exp [7 (K_I;_) J ,_] (particles per energy unit) . (45)
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5.4. Spectrafor MHD Turbulence, Thermal-Type Injection, and t = cst., for D(p) ~ p*/p
5.4.1. Time-dependent Spectrum for MHD Turbulence, Thermal-T ype Injection, and t = cst., for D(p) ~ p*/B
Introducing the thermal injection spectrum equation (39), into equation (15), we obtain,

D1/4(E) E E:l/zﬂle—E'/knT Noe-(aﬂ+3lfz/4¢t) @ 1/2 , , . .
(K, TV Js,  DA(E) ;172 + e} a_, R4(E', E) |dE (particles per energy unit) , (46)

where K p is the Boltzmann constant, R was defined below equation (15), and a, was defined below equation (41).

N(E, t) ~

5.4.2. Steady State Spectrum for MHD Turbulence, Thermal-Type Injection, and © = cst., for D(p) ~ p*/B
Substitution of the thermal spectrum and the MHD acceleration rates into equation (21) gives

 @IDVE) [FEVE [ -E
ME) > e (K, 1775 )y, DA(E) P [KB T

where a, has been previously defined, and J {E, E') is the same as J {E, E,) with E’ = E,,.

1/2
B (3‘:‘) JAE, E')]dE’ (particles per energy unit) , “7)

5.5. Spectra for Langmuir Turbulence, Thermal-T ype Injection, and © = cst
5.5.1. Time-dependent Spectrum for Langmuir Turbulence, Thermal-Type Injection, and t = cst

Introducing the acceleration rates for Langmuir turbulence in equation (15) we obtain

__D'E) [T EMHSEYAEIES  (—E\[No —aLt—wi) (fl_q)(_n_)”z { .
NE =G L, pEE) P (K, T)L”’ e"p( w6k,c )2 Ne) @)1

3 a 1/2 —- 3 a 1/2 . i
X exp [(—)(—") J L:I + [erf (Z,) + 1] exp [(—)(—") J L]}]dE’ (particles per energy unit) , (48)
2M\k, 2 \k,

where a;, K, and J; are similar thatin § 5.3.1.

5.5.2. Steady State Spectrum for Langmuir Turbulence, Thermal-Type Injection, and © = cst
By substitution of the Langmuir acceleration rates A(E) and D(E) into equation (21) we obtain

Dl/4 E E!1/2 &/& 1/2¢ 19/8 —E 3 a 1/2 , . .
N(E) ~ (na,il)(i 3 (Ki?’)’ 72 J; ) ( /D 33 n (lg; /B) exp [( X, T) - (EX—IEL;) J ,_:IdE (particles per energy unit) . (49)

5.6. Spectrafor MHD Turbulence, MNCS Injection, and T = cst
5.6.1. Time-dependent Spectrum for MHD Turbulence, MNCS Injection, and t = cst

Introducing the spectrum from MNCS injection, equation (40), into equation (15) we obtain

N(E, t) ~

1.07 x 10~ 5D3/4(E) E ,B’e‘ 1.12(E’[Ec)3/4 NO e—a;r-31f2/4an & 1/2
~\—] Rs(E,E)|dE i Y,
(@n)*p b, ES*DI4E) 12 + 2 \a, s( ) (particles eV ™1) (50)

5.6.2. Steady State Spectrum for MHD Turbulence, MNCS Injection, and t = cst
Introducing the injection spectrum given in equation (40) into equation (21), we obtain
1.07 x 10~5(q/2)D¥*(E) [* B’ exp [—1.1(E'/E )** — (3a,/a)'?J(E, E)]

N(B) =~ , :
778 ko ESDIHE)

dE'  (particles eV™Y) . (51)

5.7. Spectra for Langmuir Turbulence, MNCS Injection, and © = cst
5.7.1. Time-dependgnt Spectrum for Langmuir Turbulence, MNCS Injection, and © = cst

By substitution of the rates given in equations (34)—(35), and the injection spectrum from a MNCS, equation (40), into equation
(15) we obtain

107 x 10-5D'A(E) ( (8/6)'2(8/B)>"® ENA . - —ayt =907\ | (a0)( 7\
~ —1.12( = N.t- 12 —_T 7L i
NE, 1) @n'” by DYAENEE P E, of TP Teke )T 2N,

3\ a, \'? —-3\/a; \'"?
X {[erf (Z)— 1] exp I:(E) K_> J L:I + [erf (Z,) + 1] exp I:(T)(K_) J L]}]]dE’ (particles eV 1) . (52)
\**L, L,
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5.7.2. Steady State Spectrum for Langmuir Turbulence, MNCS Injection, and © = cst
Introducing the Langmuir acceleration rates and the MNCS injection spectrum given in equation (40), we obtain for this case

N(E) - 1.07 % lo—S(qo/z)DlM(E) E (g/gl)l/Z(ﬂl/ﬂ)lQ/S exp [_1‘12(E1)3/4 3 (3)( a

1/2
- - E’' ticles eV™Y). (5
aII‘IZ - D3[4( E/) E/3/4 Ec KL) J L]d (pat 1CIES € ) ( 3)

2

6. RESULTS

The results are illustrated in Figures (1)-(10). Figure (1) shows the comparison of the steady state WKBJ solution, given in
equation (21) (circles) for monoenergetic injection with the nonrelativistic analytical solution given by Ramaty (1979) (dashed line),
the numerical solution given by Miller et al. (1990) (solid line), and the results of a Monte Carlo simulation of Miller et al. (1987)
(crosses). The normalization to the Miller et al. results was done at the point of minimum energy (1 MeV) with a normalization
factor <0.05 (5%) as determined directly from the figure of the cited work.

It can be seen that the WKBJ equilibrium spectrum coincides quite correctly with the numerical spectrum. Figure 2 shows the
comparison of the steady state WKBJ solution (circles) with the ultrarelativistic solution for E, > mc? obtained by Ramaty (1979)
(solid line) and the ultrarelativistic solution for § = 1 obtained in equation (B13) of this work (dashed line). It can be observed that
the asymptotic solution with E, > mc? fits quite correctly the overall solution by the WKBJ method for E > 10* MeV, becoming
identical for injection energy values E > 10° MeV, whereas the solution (B13), for f = 1, requires much higher values of E, to
approach the overall WK BJ solution.

Figure 3 shows time-dependent proton spectra for monoenergetic injection: the open circles represent the WKBJ solution with
continuous injection (second term of eq. [41]), and the solid line is the corresponding numerical solution of Miller et al. (1990). The
comparison of both energy spectra is done for three different acceleration times, with & = 0.04 s ! and 7 = 1 s. Figure 4 shows the
same solutions for six different acceleration times and different values of the acceleration parameters (x =0.2s™ !, 7=025s). It
should be noted that the discrepancy at high energies between the WKBJ and the numerical solution is more important with the
parameters used in Figure 4. This sensitivity to the acceleration parameters at high energies may be attributed to the approximation
done in passing from equation (12) to equation (13), and of course, to the approximate nature of the method. In fact, in the case of
the steady state solution where the mentioned approximation was not done, there is not such a notorious discrepancy at high
energies, as can be observed in Figure 1.

Figure 5 shows the time-dependent energy spectra of protons which have been accelerated by MHD turbulence while injected
continuously from a MNCS for five different acceleration times. These curves show how the spectra reach equilibrium as time
elapses. Within an error of ~1% we have determined that the time for particles of E < 10 MeV to reach equilibrium is ¢t > 4 s; for
particles of E < 102 MeV itis t > 7 s; for E < 10> MeV itis t > 13 s; and for E < 10* MeV it is t > 22 s. Figure 6 shows similar
results to those of Figure 5 but for different acceleration parameters a, 7. In this case the equilibrium for particles of E < 10 MeV is

10
0
10 URRLLL rlmﬂ] T IHIIIT[ IRBALLL] B
— — B Steady-state ulfra relativistic
- Steady-gtoteenergyspeptro for 2 energy spectra for Fermi ]
L Fermi acceleration with mono- _] 0" — acceleration withmono- |
1074 |— energetic continuous injection_| B energetic continuousinjection |
B B "~ (qo=1proton-s71) |
= T . o' .
| — - —
3108 — - ]
2 B B 0’5 ]
e T i} T f .
s I -1 > [ i
S 02— \ ] 2 oL ]
a - \ — - B ]
= - Vo | S - i
w \ 5 e - V-
= s a:004¢t \ - a 03—
Z 107 — T:=1s \ —] : I~ 7
B Eo=1MeV ! n w : ]
- o= 1protons™! \ B = 0¥ |- ] —
- ] — | \& 4
20 . \ \
10" }— oooo This work (WKBJ) \ - ) A\ ]
| -~ Ramaty 1979 (Analytical solution® - [ SoCoWKBUThis work )\, o § :
[+ +-+-+Miler etal I987(Monfecaro simula‘&ion) 103! |-~ fspnicsoion {3 0025% .
- Miller et al 1990(Numerical solution, R N0 21107
1624 L vl v 1l g uuul__u_um sl Ramty1979(Eo»mc2)‘
0° 10 w2 100 0t i R e
Kinetic energy (MeV) Kinetic energy (MeV)
FiG. 1 FiG. 2

FiG. 1.—Steady state spectra for Fermi acceleration with monoenergetic injection )
F1G. 2—Ultrarelativistic steady state spectra for Fermi acceleration with monoenergetic injection
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FiG. 3.—Time-dependent energy spectra for Fermi acceleration with monoenergetic continuous injection, at three different acceleration times
F1G. 4—Time-dependent energy spectra for Fermi acceleration with monoenergetic continuous injection, at six different acceleration times
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FI1G. 5—Time-dependent energy spectra for Fermi acceleration with magnetic neutral current sheet continuous injection, at five different acceleration times
F16. 6.—Time-dependent energy spectra for Fermi acceleration with magnetic neutral current sheet continuous injection, at four different acceleration times
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FiG. 9.—Equilibrium energy spectra for Fermi acceleration with monoenergetic injection, for different velocity dependences of the escape time t
FIG. 10.—Error control function of the WKBJ method for different values of the parameters az in the steady state spectra of Fermi-type acceleration by MHD
turbulence.

reached when t > 0.9 s; for E < 10> MeV when ¢t > 1.5s; for E < 10° MeV when ¢t > 2.6 s; and for t < 10* when t > 5 s. Figures 7a
and 7b show the time-dependent energy spectra of protons that have been accelerated by Langmuir turbulence while injected
continuously with a monoenergetic flux, for four different acceleration times. A different value of the acceleration efficiency K; is
assumed in Figure 7b relative to Figure 7a. For the acceleration parameters used in Figure 7a, the equilibrium for particles of
E < 10 MeV is reached when t > 21 s; for E < 40 MeV when t > 38 s; for E < 10° MeV when t > 98 s. In the case of the parameters
employed in Figure 7b particles of E < 10 MeV reach the equilibrium when t > 5.4 s; for E < 10> MeV when ¢ > 11 s; and for
E <10*MeVitist > 21s.

Figure 8 shows an estimation of the accumulated relative error S, (in absolute value), when the WKBJ series [eq. (A3)] is cut at
the second equation of the series: the solution of these two first equations determines the solution of the homogeneous part of
equation (6). A representative evaluation of the maximum relative error is obtained by taking the maximum values of « and 7 within
the function («/@)'/? in the stationary case (dashed lines) appearing in equation (57) and the function (x/a@)!/? exp (—at) in the
time-dependent case (solid lines) appearing in equation (56). This “maximization” may not include the parameter E, since any
change in its value within the integral appearing in equations (56) and (57) is practically compensated by the opposite effect in the
term [1 — (mc?/&,)*]. The curves (a) show the maximum relative error for electrons, and the curves (b), (c), and (d) for protons. In
particular, the parameters used in curve (d) (o, 7, E,) correspond to those used in Figure 4. It can be observed that in all cases, both
steady state and time-dependent, the absolute value of the relative error is always lower than 3%.

Figure 9 shows the effect of the velocity dependence of the escape time, 7, on the energy spectrum when protons are accelerated by
MHD turbulence while continuously injected into the stochastic acceleration process. It can be seen that the curves with u # 0 tend
toward a power-law from transrelativistic energies (E > mc?) up to the ultrarelativistic energy range. This may be interesting in the
light of new observational results (Mandzhavidze et al. 1993). However, it should be mentioned that the difference between the
spectra with 4 = 0 (7 = constant) and u # 0 (velocity-dependent) is rather qualitative.

Figure 10 shows the absolute value of the error control function (Olver 1974), that is the accumulated error up to the energy E due
to the approximations made in the functions R(#, s) or R(n) (appearing in the normal form of the differential eq. [3]), that we have
used to construct the approximated solution by the WKBJ method. This is illustrated for a wide range of the product az (Appendix
C). It can be appreciated from this figure that the error control function is very small, which is consistent with the relative error
(Bender & Orszag 1978) of the WKBJ solution that we have evaluated in this work.
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7. ANALYSIS AND CONCLUSIONS

Particle acceleration in a wave-particle interaction process and the energetic evolution of particles are two correlated problems
whose study leads to the establishment of a noncollisional transport equation for the distribution function of particles. Within the
context of particle and turbulence isotropy, the transport equation reduces to a diffusion equation in momentum space which in
turn may be rewritten as a Fokker-Planck type equation in energy space. The latter one has been generalized as a continuity
equation which includes, in addition to the dynamic effects of wave-particle interactions, the additional effects that energetic
particles may undergo in a plasma. Until now the time-dependent solution of the transport equation in the entire energetic range may
be solved only by numerical methods or Monte Carlo simulations; analytical solutions exist only in limited energy ranges. In this
work we use the WKBJ method and the Laplace transform technique to obtain an approximate analytical solution throughout the
entire particle energy domain (“ WKBJ solution”), and we show that the existing closed solutions may be obtained as particular
cases of the WKBJ solutions. The analysis of the obtained results may be carried out in three main directions: (1) Reliability of the
WKBJ solutions, (2) equilibrium tendency of particle acceleration by plasma turbulence, and (3) effects of particle escape on the
energetic particle distribution.

1. To evaluate the reliability of the time-dependent and stationary energy spectra obtained with the WKBJ method, three
alternatives may be considered: namely (a) the comparison of N(E, t) and N(E) with existing results derived by other methods, (b)
evaluation of the intrinsic relative error of the WKBJ method according to Appendix A (Bender & Orszag 1978), and (c) evaluation
of the error control function (Olver 1974) according to Appendix C. These three options have been done for Fermi type acceleration
by MHD turbulence:

(a) Four methods have been used for the comparison of the WKBJ solutions. These are (i) analytical closed solutions in the
ranges E, < mc? and E, » mc?, (ii) Monte Carlo simulations, (iii) numerical solutions, and (iv) asymptotic solutions for § = 1. For
the sake of such comparisons we have assumed continuous monoenergetic injection, constant escape time and MHD turbulence. As
can be appreciated in the figures, there is an excellent agreement, for both the steady state and the time-dependent spectra, between
the global (for any § value) WKBJ solution and the analytical closed solutions, and the Monte Carlo solutions.

A slight discrepancy between the WKBJ solution and the numerical spectra may be noted in the high-energy extreme of the
spectra, when at > 0.04. In the steady state case this discrepancy may be attributed to two main sources: the approximate nature of
the WKBJ method and probable deficiencies of convergence in the numerical results that we used as reference frame. In fact, most of
numerical methods present convergence problems as the particle energy increases.

For the time-dependent case, an additional source of discrepancy at high energies is the approximation made in a(E) in passing
from equation (12') to equation (13). Regarding the comparison to the asymptotic solution, it can be seen in Figure 2 that good
agreement is obtained only when the threshold energy E, > 10° MeV, whereas a perfect agreement between the WKBJ solution and
the closed solution (for E, > mc?) is obtained with E, > 4 x 10* MeV.

(b) The relative error of the WKBJ method is estimated on basis of the first two terms of the series given by equation (A3) of
Appendix A, in such a form that the evaluation of the third term gives the relative error, S,, as indicated in equation (A5). Therefore,
to quantify the precision of our results, let us consider equation (7): R(y, s) = g>P, = R[3(E,, E), s] = f(E, s); since f(x) in equation
(A2) corresponds to the coefficient of N(#, s) in equation (6), or N(n) in equation (17), we can set f(x) = f(E, s). To evaluate f(x) we use
the rates A(E) = 4ap&/3 and D(E) = af>&2/3 in P, as given in equation (4), so that,

f(x) = g*P, = —3p[s + a(E)]/ap5 &* (4

where B = (62 — m*c*)'?/#, a(E) = 1 *(E) + (dA/dE) — (d*D/dE?), & = E + mc?, B, = B(€ = &,), and s corresponds to the variable
t in the Laplace space. For simplicity we approximate a(E) as its average value between E, and E, a(E) = [a(E,) + a(E)]/2, in such a
way that by substitution of equation (54) into equation (AS), for the variable E, we obtain

201 — (mc*/8)7] (®

S,(E, 5)= + 1.804 x 1072 % _
AE, 5)= £ x [s + aB)] ' .

Fy(ENdE’ (55)

where
528312 &2 93
(épz _ mzc4)5/4 - (gz _ mzc4)9/4 - gl/Z(JZ _ mzc4)1/4 ’

and a(E) = 17 + (/3 B! + 38 — 2p°). To determine S,(E, t) we apply the inverse Laplace transform &~ ![(s + @)~ /2] = (nt)~ /2
exp (—at):

Fy(E) =

E
Sy(E, t) = + 1.018 x 10~ %(a/t)'/[1 — (mc?/&,)*] exp (—at) j F,(EdE' (56)
Eo
for the steady state case the corresponding S, value is obtained by putting s = 0 (t —» 00) in equation (55),
E
Sy(E) = + 1.804 x 10~ (/@) /2[1 — (mc?/&,)?] J F,(EdE' 57
Eo

both expressions, S,(E, t) and S,(E) are very sensitive to the acceleration parameters a, 7, whose values depend on the astrophysical
sources; in the case of solar flare sources, these parameters have not yet been determined with precision. For the coronal plasma of
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flares, the more usual values (e.g., Miller 1991) fall in the ranges 0.005 < « < 1s~ ! and 0.05 < 7 < 1 s. Similarly, the values of E, are
not very well defined; nevertheless, some bounds can be settled on the basis of particle energy losses prevailing at the sources: usual
values are E, ~ 1 MeV per nuclear for ions, and E, ~ 1 keV for electrons. The evaluations of | S,(E, )| and | S,(E)| for acceleration
by MHD turbulence in Figure 8 show that the relative error is always extremely small for values of « and t within the mentioned
ranges. We conclude that the WKBJ method is a powerful tool to solve transport equations of energetic particles with a high degree
of reliability.

2. The derived time-dependent spectra from equation (15) allows the study of the evolution of energetic particles that have been
accelerated by plasma turbulence; for acceleration times long enough (¢t — o), the process reaches an equilibrium state, and, hence,
the behavior of the energetic distributions may be described by the steady state spectra derived from equation (20). Such a tendency
toward equilibrium is due to the fact that the acceleration process is associated to the plasma turbulence relaxation. Consequently,
the time for the acceleration process to reach equilibrium depends on the specific type of turbulence, the plasma parameters, and the
initial energetic distribution of particles going into the process. Miller et al. (1990) determined numerically the equilibrium times for
stochastic Fermi acceleration of protons that are continuously injected with a monoenergetic energy of 1 MeV. We have reproduced
analytically these results in Figures (3) and (4). In Figures (5) and (6) we show results of equilibrium times, for the same process and
same acceleration parameters a, 7, E,, but with an initial energy distribution proceeding from preacceleration in a MNCS. Figure (5)
shows that equilibrium times are slightly longer than with monoenergetic injection; however, such a discrepancy decreases as the
particle energy increases, so that for E > 10* MeV the equilibrium times are basically the same. The corresponding analysis for
acceleration by Langmuir turbulence with monoenergetic injection (Figs. 7a and 7b) indicates that the equilibrium times are
notoriously longer than the corresponding times with acceleration by MHD turbulence. Also, it can be appreciated in those figures
that equilibrium times increase rapidly when the acceleration efficiency parameter K; decreases; that is, when the conditions of
density and temperature tend toward the high solar corona (lower density and higher temperature) and conversely. We conclude
that equilibrium times are sensitive to the kind of accelerating turbulence but only slightly sensitive to the kind of involved particle
injection; that is, a very simple injection, such as the monoenergetic one, gives a quite similar description of the tendency toward the
equilibrium as an energy-dependent injection spectrum.

3. Particle disappearance from a stochastic acceleration process may be of different nature, diffusive escape, convective escape,
fragmentation, catastrophic escape, etc. (e.g., Droge & Schlickeiser 1986). The escape process may or may not be dependent on the
particle parameters, energy, magnetic rigidity, or velocity. For instance, in the case of a catastrophic opening of a closed magnetic
source topology, particles of all kinds are ejected simultaneously, but if particles escape by spatial diffusion, there is a dependence on
particle velocity and on the parallel diffusion coefficient (which in turn depends on the turbulence spectrum). We have considered
velocity-dependent escape times (t ~ f~#) and computed steady state spectra by introducing 7 into the expression of a(E) in
equation (20). It was found (Fig. 9) that for u > 0 the spectra for E > mc? tend rapidly toward a power-law; however, the main
difference with respect to the spectra with T = constant (u = 0) is of qualitative rather than quantitative nature. We conclude that, in
first approximation, evaluations of particle spectra with T = constant give a reliable description of the actual particle energy spectra
in steady state conditions.

APPENDIX A
THE WKBJ METHOD

The theory known as WKBJ (Wentzel, Kramer, Brillouin, & Jeffreys) is a useful tool to derive global approximations to the
solution of linear differential equations of any order. In its formal treatment (e.g., Bender & Orszag 1978), the solution of a linear
differential equation is represented by

¥(x) ~ exp [ y A”“S,(x):l . (A1)
j=0 .
In order to obtain an approximated solution of a given equation of the type
&%
£35Sy =0  [f®>0] (A2)

we substitute equation (A1) into equation (A2) obtaining the following sequence of equations
. . . it
S(%:f(x), 2$0S1+go=0, 2SOSJ+S1_1+ ZS’SJ'_1=0 (122) (A3)
r=1

where the dots indicate derivatives with respect to x. Solving this set of coupled equations, and by substitution of the solutions into
equation (A1) we obtain the solution of equation (A2) by the WKBJ theory in its more general form.

If the solution of equation (A2) is built using only the first term of the equation sequence (A3), the so-called geometrical optics
approximation (e.g., Bender & Orszag 1978) is obtained.

Solving simultaneously the two first equations of the sequence (A3), we obtain S, and S,, giving the so-called approximation of
the physical optics, which provides a more representative description of the exact solution y(x).

At this level the obtained approximated solution corresponds to the so-called Liouville-Green transformation (Olver 1974). The
solution of equation (A2), is then obtained in terms of the physical optics approximation (or equivalent the Liouville-Green
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transformation) as

Yop®) = 1 f1x) ™% exp [—_rf(x’)" 2dX’] + ¢, fix)™1* exp U}(x’)”zdx'] , (A4)

where ¢, and c, are constants, and a is the initial value of the variable x. Now the relative error between the approximation of the
physical optics, equation (A4), and the exact solution y(x) is given by AS,(x) (Bender & Orszag 1978). S,(x) is obtained by solving
simultaneously the first three equations of sequence (A3):

L e S L
Salx) = ii {8[f(x’)]3” - 32[f(x')]”’} o'

hence equation (AS5) gives the relative error that is carried out when only the two first terms of the WKBJ series are used to solve a
linear differential equation.

(AS)

APPENDIX B

SOLUTION OF THE TRANSPORT EQUATION IN THE ULTRARELATIVISTIC RANGE (1)
- FOR MHD TURBULENCE, WITH 1t = cst AND D(p) ~ p*/B

Bl. TIME-DEPENDENT SOLUTION

The solution to equation (3) of the text, for the particular case of ultrarelativistic energies, is obtained by applying the Laplace
transform to the variable ¢. Since in this case f = 1, equations (31)—(32) reduce to A(E) = AE and D(E) = DE?, where A and D are
constants; hence, applying the transform and the variable change In (E/E,) = z, equation (3) reduces to a differential equation with
constant coefficients, namely,

d?N(z,s) (4D — A\dN@z,s) [2D—A—(s+7)! _ [0+ NO)]
iz +( D ) iz +[ D ]N(z’s)‘” D (B1)

where N(z, s) denotes the Laplace transform of N(z, t). - 5
The solution of the homogeneous part of equation (B1) in terms of the original variable is Ny = C, N, + C, N,, where
N, = (E/Eo)* and N, = (E/E,)*?, with C, and C, constants, E, an initial energy, and

4D—A_ _ [@4D— 4y
P [ aD

To build the particular solution, the method of Green functions is used (e.g., Arfken 1970):

1/2
Ai,=— +A—2D+‘c"+s] . (B2)

E
N9 = = 5 | INE 0+ OB 91GE, £ M, ®3)

where the Green function in this case is
G(E E, s)= —(E/[E)*/(A, — %) (E2E 2E,p), (B4)
so that the particular solution may be expressed in the following form:

LI (E/E')“] 1 r i} [ (E/E)™ ] . .
NodB 9 =D, 5, ” l[ N(E', OdE' + 0 | &7 ———= l(E)E' articles per energy unit). (BS
D=5k, Lo L N E Mt op, LE T - JIEME @ per energy unit) . (BS)

Using the inverse transform equation (B5) becomes

_ 1 (4D_A)2 l E , E —(4D— A)/A
N,E, t)= @D0E, exp{ [ o totA 2D]t}L oN(E,O) =

[n (E/ENY?Y , 1 E(E\"ép-anD
X exp{ 4D1 dE' + (@nD)"E, qu(E) A dE
t _ 2 N2
x | v~ exp {— (4D — A) + 1 +A-2D}|t — w dt’ (particles per energy unit) . (B6)
o 4D T 4Dt

A similar expression was previously obtained by Melrose (1980 [vol. 2, p. 114]), in terms of the time integral, but it was not solved
and is not dimensionally consistent. The time integral in the second term of the right-hand side of equation (B6) is not a direct one;
to effectuate it, let us denote the integral in the time by I(t), so

t
1) = J 712 exp [— X2 — 2/t )dY (B7)
(]
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with the corresponding identifications for & and %. Using the variable change ¢t = x?, the asymptotic properties of the error
function and comparing with the asymptotic integral for t — oo (Abramowitz & Stegun 1968) it is found that

1(t) = (n'2/2Z){[erf (Z,) — 1] exp (X D) + [erf (Z,) + 1] exp (-229%), (B8)
where Z; , = Z1t'? + ¥t~ '/2. Introducing equation (B8) into equation (B6) it is obtained that

1 E (E\4P-42P[ N(E', 0) —agt—bg) a(E) (z)‘/z
v =gg L) e () 2

x {[erf (Z,) — 1] exp (M,) + [erf (Z,) + 1] exp (—M l)}:ldE’ (particles per energy unit) . (B9)
where
ay=(1/1) + (4 — 2D) + (4D — A)*/AD, b, = (1/4D)[In(E/E)]?,
M, = D™'?[In(E/E)][(1/7) + (A — 2D) + (4D — A)*/4D]*? ,
and

Z,,=1(a,0)""* + In(E/E)/2Dt)*/? .

Now, as discussed in § 2, the Green function given in equations (B4) satisfies completely the boundary conditions [when E — oo,
G(E, E', 5) is a finite decreasing function and it takes a constant value when E — E,, as required by cosmic particle spectra], so that
the two homogeneous solutions N, and N, are not useful within this context. Therefore, the general solution of equation (B1) is
given by the particular solution, so that for the case of MHD turbulence with 4 = 4D = (4/3)a (¢.g., Melrose 1980), equation (B9)
may be rewritten as

L (*la=o®) =gt —b;]  aE) (n)"
N(E, t)=(47tot/3)”2Eo Lol[ i exp[ a t ]4.‘12 )(aﬁ)

9.

x {[erf (Z,) — 1] exp (M,) + [erf (Z)) + 1] exp (—M,)} ]dE’ (particles per energy unit) . (B10)

Here ?’z:"(E’ = N(I:j’, 0), a;=(a/3)2 + 3/az), b, = [In(E/E')]*/(4a/3), M 1=(3a,/0)"*In(E/E) and Z, , = (a,0'? + In(E/E)/
(4at/3)/2. In the specific case of monoenergetic injection, g(E) = A 6(E — E), we obtain the following analytical expression:

1
N(E, 1) = @n3)"E, [(No/t'?) exp (—a,t — by/t) + (qo/2n/a) *{[erf (Z,) — 1]

x exp (M,) + [erf (Z,) + 1] exp (— M,)}] (particles per energy unit) , (B11)

where N .in the injection spectrum has been denoted by g, (particles s~ ') indicating continuous injection, and has been denoted by
N, to indicate the total number of impulsively injected particles in a pulse at t = 0, and M, is the same as M, evaluated at E' = E,.
It should be emphasized that this particular case has been previously analyzed by Kardashev (1962).

B2. STEADY STATE SOLUTION

Similarly to the time-dependent case when f~ 1 and 4 = 4D = (4a/3), for the steady state situation (s = 0) the following
equation is obtained:

N 1 E E\ —(@+3/an)1/2 . . .
(E) = OPE T T Loq(E )<E) dE (particles per energy unit) . (B12)

It can be seen that equation (B12) can be directly obtained from equation (B10) when ¢ — oo, in which case the first term of equation

(B10) goes to zero and erf (Z,) — 1. In the specific case of monoenergetic injection the previous equation becomes an analytical
power law of the type

N(E) = (0/2)[(#/3)2 + 3/az)!/*Eq]~Y(E/Eo)~@*3*'*  (particles per energy unit) . (B13)

APPENDIX C
EVALUATION OF THE ERROR CONTROL FUNCTION FOR THE STEADY STATE CASE

Another alternative to quantify the validity of the WKBJ approximation in the context of an evolution equation is by applying
the Liouville transformation (Olver 1974) to the normal form of the equation. In the present case, we apply it to equations (6) and

- (17) for the time-dependent and steady state situations, respectively. In both cases the transformation leads to a differential equation

of the form
d>y

25_2=(1+®W’ (C1)
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where % = [£(n, 5)]"*N(, s), and &, s) = [12 (i, s)dn’, with s = O in the steady state case. By solving equation (C1) with ® = 0 the
Liouville-Green approximation to the solution of the homogeneous part of equations (6) or (17) (Olver 1974) is obtained which
coincides with the approximation of the “optical physics” within the WKBJ theory (see Appendix A). In these circumstances the
integrated value of @ designated as “error control function” (F) (Olver 1974) is a direct measure of the information that is lost by
applying the Liouville-Green approximation. In the particular case of Fermi-type acceleration by MHD turbulence the value of F in
terms of the variable energy E, in the steady state case, is given as

F(E) = r[(“”" — SR?)/16R*)(Bo/B)*dE
Eo ’

where
R=(8+1,)/8*,

Iy = [(B/ar) + (38 — 28%]/s5

(€2

L= —ﬁ64’

R = —[21, B8 + ly(mc®)* + 21, *8* — 3p(mc*)(1 — 28%)/p31/BE° ,

Nme?)’[ — 301 — 28%)/B3 + 1,/B] | 12(mc?)*

g 8Lthp) (mc)*{[3(1 — 28%)/85] + L/B}
4

& p*&d

+

56 + Bz gs
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